Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(4): 647-663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737323

RESUMO

Rice cultivation in Northeast India (NEI) primarily relies on rainfed conditions, making it susceptible to severe drought spells that promote the onset of brown spot disease (BSD) caused by Bipolaris oryzae. This study investigates the response of prevalent rice cultivars of NEI to the combined stress of drought and B. oryzae infection. Morphological, physiological, biochemical, and molecular changes were recorded post-stress imposition. Qualitative assessment of reactive oxygen species through DAB (3,3-diaminobenzidine) assay confirmed the elicitation of plant defense responses. Based on drought scoring system and biochemical analyses, the cultivars were categorized into susceptible (Shasharang and Bahadur), moderately susceptible (Gitesh and Ranjit), and moderately tolerant (Kapilee and Mahsuri) groups. Antioxidant enzyme accumulation (catalase, guaiacol peroxidase) and osmolyte (proline) levels increased in all stressed plants, with drought-tolerant cultivars exhibiting higher enzyme activities, indicating stress mitigation efforts. Nevertheless, electrolyte leakage and lipid peroxidation rates increased in all stressed conditions, though variations were observed among stress types. Based on findings from a previous transcriptomic study, a total of nine genes were chosen for quantitative real-time PCR analysis. Among these, OsEBP89 appeared as a potential negative regulatory gene, demonstrating substantial upregulation in the susceptible cultivars at both 48 and 72 h post-treatment (hpt). This finding suggests that OsEBP89 may play a role in conferring drought-induced susceptibility to BSD in the rice cultivars being investigated. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01447-4.

2.
Fungal Biol ; 127(7-8): 1098-1110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495300

RESUMO

Bipolaris oryzae, causing brown spot disease in rice, is one of the neglected diseases reducing rice productivity. Limited knowledge is available on the genetics of host-pathogen interaction. Here, we used time-course transcriptome sequencing to elucidate the differential transcriptional responses of the pathogen genes in two contradictory infection-responsive rice hosts. Evaluation of transcriptome data showed similar regulation of fungal genes within susceptible (1733) and resistant (1846) hosts at an early stage however, in the later stage, the number was significantly higher in susceptible (2877) compared to resistant (1955) hosts. GO enrichment terms for upregulated genes showed a similar pattern in both the hosts at an early stage, but in the later stage terms related to degradation of carbohydrates, carbohydrate transport, and pathogenesis are enriched extensively within the susceptible host. Likewise, similar expression responses were observed with the secretory and effector proteins. Plant pathogenic homologs genes such as those involved in appressorium and conidia formation, host cell wall degradative enzymes, etc. were reported to be highly upregulated within the susceptible host. This study predicts the successful establishment of B. oryzae BO1 in both the host surfaces at an early stage, while disease progression only occurs in the susceptible host in later stage.


Assuntos
Magnaporthe , Oryza , Transcriptoma , Oryza/microbiologia , Perfilação da Expressão Gênica , Genes Fúngicos , Doenças das Plantas/microbiologia
3.
Genes (Basel) ; 14(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36833415

RESUMO

Fusarium wilt is a major devastating fungal disease of tomato (Solanum lycopersicum L.) caused by Fusarium oxysporum f. sp. lycopersici (Fol) which reduces the yield and production. Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) are two putative negative regulatory genes associated with Fusarium wilt of tomato. Fusarium wilt tolerance in tomato can be developed by targeting these susceptible (S) genes. Due to its efficiency, high target specificity, and versatility, CRISPR/Cas9 has emerged as one of the most promising techniques for knocking out disease susceptibility genes in a variety of model and agricultural plants to increase tolerance/resistance to various plant diseases in recent years. Though alternative methods, like RNAi, have been attempted to knock down these two S genes in order to confer resistance in tomato against Fusarium wilt, there has been no report of employing the CRISPR/Cas9 system for this specific intent. In this study, we provide a comprehensive downstream analysis of the two S genes via CRISPR/Cas9-mediated editing of single (XSP10 and SlSAMT individually) and dual-gene (XSP10 and SlSAMT simultaneously). Prior to directly advancing on to the generation of stable lines, the editing efficacy of the sgRNA-Cas9 complex was first validated using single cell (protoplast) transformation. In the transient leaf disc assay, the dual-gene editing showed strong phenotypic tolerance to Fusarium wilt disease with INDEL mutations than single-gene editing. In stable genetic transformation of tomato at the GE1 generation, dual-gene CRISPR transformants of XSP10 and SlSAMT primarily exhibited INDEL mutations than single-gene-edited lines. The dual-gene CRISPR-edited lines (CRELs) of XSP10 and SlSAMT at GE1 generation conferred a strong phenotypic tolerance to Fusarium wilt disease compared to single-gene-edited lines. Taken together, the reverse genetic studies in transient and stable lines of tomato revealed that, XSP10 and SlSAMT function together as negative regulators in conferring genetic tolerance to Fusarium wilt disease.


Assuntos
Fusarium , Solanum lycopersicum , Fusarium/genética , Sistemas CRISPR-Cas , Ácido Salicílico/metabolismo , Mutação , Xilema/metabolismo
4.
Indian J Med Microbiol ; 43: 58-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36371334

RESUMO

PURPOSE: Seroepidemiology and genomic surveillance are valuable tools to investigate infection transmission during a pandemic. North East (NE) India is a strategically important region being the gateway connecting the country with Southeast Asia. Here, we examined the spread of SARS-CoV-2 in NE India during the first and second waves of COVID-19 using serological and whole genome sequencing approaches. METHODS: qRT-PCR analysis was performed on a selected population (n â€‹= â€‹16,295) from June 2020 to July 2021, and metadata was collected. Immunoassays were studied (n â€‹= â€‹2026) at three-time points (August 2020, February 2021, and June 2021) and in a cohort (n â€‹= â€‹35) for a year. SARS-CoV-2 whole genomes (n â€‹= â€‹914) were sequenced and analyzed with those obtained from the databases. RESULTS: Test positivity rates (TPR) in the first and second waves were 6.34% and 6.64% in Assam, respectively, and a similar pattern was observed in other NE states. Seropositivity in the three time points was 10.63%, 40.3%, and 46.33%, respectively, and neutralizing antibody prevalence was 90.91%, 52.14%, and 69.30%, respectively. Persistence of pan-IgG-N SARS-CoV-2 antibody for over a year was observed among three subjects in the cohort group. Normal variants dominated the first wave, while B.1.617.2 and AY-sublineages dominated the second wave in the region. The prevalence of the variants co-related well with high TPR and seropositivity rate in the region and identified mostly among vaccinated individuals. CONCLUSION: The COVID-19 first wave in the region witnessed low transmission with the evolution of diverse variants. Seropositivity increased during the study period with over half of the individuals carrying neutralizing antibodies against SARS-CoV-2. High infection and seroprevalence in NE India during the second wave were associated with the dominant emergence of variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Soroepidemiológicos , SARS-CoV-2/genética , COVID-19/epidemiologia , Genômica , Índia/epidemiologia , Anticorpos Neutralizantes
5.
Environ Technol ; : 1-19, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282587

RESUMO

Utilization of fruit peel wastes to grow thraustochytrids for nutritional enrichment of wastes will lower environmental and economic costs associated with feedstock specific for aquaculture industries. In this study, high-carbohydrate content agricultural wastes, such as orange, pineapple, banana, and mausambi fruit peels were enriched with essential fatty acids producing thraustochytrids Aurantiochytrium sp. ATCC276. Characterizations of fruit peels revealed the presence of high carbohydrate content (9-16%) and reducing sugars essential for the growth of thraustochytrids. Optimization for lipid production of Aurantiochytrium sp. ATCC276 was carried out using response surface methodology (RSM) in combination with different concentrations of fruit peels in solid-state fermentation (SSF) conditions. Fruit peels composed of SSF experiments were designed using a central composite design. Aurantiochytrium sp. ATCC276 cells efficiently utilized the sugar components of fruit peels for their growth and lipid accumulation. Different SSF composites made of fruit peels were significantly enriched with fatty acids of Aurantiochytrium sp. ATCC276 cells. Culturing Aurantiochytrium sp. ATCC276 cells with these waste materials demonstrated distinct responses towards lipid accumulation at different compositions. The optimized SSF composite consists of 9.91 g 100 mL-1 orange, 5 g 100 mL-1 mausambi, 4.12 g 100 mL-1 pineapple, and 8.01 g 100 mL-1 banana peels and was enriched with 8.37% of Aurantiochytrium sp. ATCC276-derived lipids. This study expands the benefits and bioprocessing potential of essential fatty acids producing Aurantiochytrium sp. ATCC276 along with fruit peel wastes which a frontier in circular bioeconomy and valorizing waste for usage.

6.
Gene ; 809: 146049, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34743920

RESUMO

Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice.


Assuntos
Bipolaris/patogenicidade , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
7.
Physiol Mol Biol Plants ; 26(5): 857-869, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32377037

RESUMO

The recent global climate change has directly impacted major biotic and abiotic stress factors affecting crop productivity worldwide. Therefore, the need of the hour is to develop sustainable multiple stress tolerant crops through modern biotechnological approaches to cope with climate change. Hybrid proline rich proteins (HyPRPs) are the cell-wall structural proteins, which contain an N-terminal repetitive proline-rich domain and a C-terminal conserved eight-cysteine motif domain. HyPRPs are known to regulate multiple abiotic and biotic stress responses in plants. Recently, a few HyPRPs have been characterized as negative regulators of abiotic and biotic stress responses in different plants. Disruption of such negative regulators for desirable positive phenotypic traits has been made possible through the advent of advanced genome engineering tools. In the past few years, CRISPR/Cas9 has emerged as a novel breakthrough technology for crop improvement by target specific editing of known negative regulatory host genes. Here, we have described the mechanism of action and the role of known HyPRPs in regulating different biotic and abiotic stress responses in major crop plants. We have also discussed the importance of the CRISPR/Cas9 based genome editing system in targeting known negative regulatory HyPRPs for multi-stress crop tolerance using the tomato crop model. Application of genome editing to manipulate the HyPRPs of major crop plants holds promise in developing newer stress management methods in this rapidly changing climate and would lead in the future to sustain crop productivity.

8.
Front Microbiol ; 11: 555312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391195

RESUMO

Symbiosis naturally provides an opportunity for microorganisms to live together by mutual or one-way benefit. In symbiotic relationships, the microorganisms usually overcome the limitations of being free-living. Understanding the symbiotic relationships of oleaginous microorganisms provides potential route for the sustainable production of microbial-based alternative fuels. So far, several studies have been conducted in oleaginous microorganisms for the production of alternative fuels. However, some oleaginous microorganisms require high quantity of nutrients for their growth, and high level of energy and chemicals for harvest and separation of lipid bodies. Symbiotic associations can successfully be applied to address these issues. Of symbiotic associations, lichens and selective species of oleaginous endosymbiotic mucoromycotina have received substantial interest as better models to study the evolutionary relationships as well as single-cell oil production. Construction of artificial lichen system composed of cyanobacteria and oleaginous yeast has been achieved for sustainable production of lipids with minimum energy demand. Recently, endosymbiotic mucoromycotina species have been recognized as potential sources for biofuels. Studies found that endohyphal bacterium influences lipid profiling in endosymbiotic mucoromycotina species. Studies on the genetic factors related to oleaginous characteristics of endosymbiotic mucoromycotina species are scarce. In this regard, this review summarizes the different forms of symbiotic associations of oleaginous microorganisms and how symbiotic relationships are impacting the lipid formation in microorganisms. Further, the review also highlights the importance of evolutionary relationships and benefits of co-culturing (artificial symbiosis) approaches for sustainable production of biofuels.

9.
Appl Microbiol Biotechnol ; 102(10): 4255-4267, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574616

RESUMO

Diatoms and haptophytes represent a key segment of the dominant phytoplankton communities that frequently form massive blooms in the photic zone of the ocean and are considered indicators of global climate changes. Diatoms and haptophytes also play a vital role in the biological carbon fixation in the carbon cycles. Carbon partitioning within diatoms and haptophytes possesses a wide range of chemical compounds and storage materials, such as lipids, carbohydrates, and chlorophyll. Among the marine microorganisms, diatoms and haptophytes have been recognized as promising sources of long- and very long-chain polyunsaturated fatty acids (PUFA). So far, a variety of approaches have been employed for genetic modification in the nuclei of diatoms and haptophytes. Studies on transformation and metabolic engineering in various intracellular genomes, such as chloroplast and mitochondria, are scarce. Particle bombardment, Agrobacterium and PEG-mediated gene transfer, and electroporation have been reported for foreign gene transformation into the diatoms and haptophytes. Antibiotics (G418 and chloramphenicol) and herbicides (zeocin, hygromycin, and norflurazon) have been successfully demonstrated as the best selection markers. Despite the availability of a wide range of molecular tools for foreign gene expression in microalgae, very few promoters (lhcf1, nr, h4, ef2, fcp, and pds) have been reported for diatoms and haptophytes. Therefore, in this review, we first summarize the significant progress that has been achieved in transgene expression in diatoms and haptophytes and highlight the importance and availability of recently developed novel tools that are suitable for transgenic expression in diatoms and haptophytes.


Assuntos
Diatomáceas/genética , Haptófitas/genética , Engenharia Metabólica/tendências , Transformação Genética
10.
Plant J ; 93(3): 566-586, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29178410

RESUMO

Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 - which does not release significant quantities of sugars to the extracellular space - was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 - which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport.


Assuntos
Clorófitas/genética , Clorófitas/metabolismo , Maltose/metabolismo , Chlorella/genética , Chlorella/metabolismo , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Concentração de Íons de Hidrogênio , Filogenia , Proteínas de Plantas/genética , Açúcares/metabolismo
11.
Biotechnol Biofuels ; 7(1): 117, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258645

RESUMO

BACKGROUND: The concept of adaptive evolution implies underlying genetic mutations conferring a selective advantage to an organism under particular environmental conditions. Thus, a flow cytometry-based strategy was used to study the adaptive evolution in Chlamydomonas reinhardtii wild-type strain CC124 and starchless mutant sta6-1 cells, with respect to lipid metabolism under nitrogen-(N) depleted and -replete conditions. RESULTS: The successive sorting and regeneration of the top 25,000 high-lipid content cells of CC124 and sta6-1, combined with nitrogen starvation, led to the generation of a new population with an improved lipid content when compared to the original populations (approximately 175% and 50% lipid increase in sta6-1 and CC124, respectively). During the adaptive evolution period, the major fatty acid components observed in cells were C16:0, C16:1, C18:0, and C18:1-3, and elemental analysis revealed that cellular carbon to nitrogen ratio increased at the end of adaptive evolution period In order to gain an insight into highly stimulated intracellular lipid accumulation in CC124 and sta6-1 resulting from the adaptive evolution, proteomics analyses of newly generated artificial high-lipid content populations were performed. Functional classifications showed the heightened regulation of the major chlorophyll enzymes, and the enzymes involved in carbon fixation and uptake, including chlorophyll-ab-binding proteins and Rubisco activase. The key control protein (periplasmic L-amino acid oxidase (LAO1)) of carbon-nitrogen integration was specifically overexpressed. Glutathione-S-transferases and esterase, the enzymes involved in lipid-metabolism and lipid-body associated proteins, were also induced during adaptive evolution. CONCLUSIONS: Adaptive evolution results demonstrate the potential role of photosynthesis in terms of carbon partitioning, flux, and fixation and carbon-nitrogen metabolism during lipid accumulation in microalgae. This strategy can be used as a new tool to develop C. reinhardtii strains and other microalgal strains with desired phenotypes such as high lipid accumulation.

12.
Antonie Van Leeuwenhoek ; 106(2): 197-209, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24803238

RESUMO

Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.


Assuntos
Aspergillus niger/fisiologia , Quitina/metabolismo , Penicillium chrysogenum/fisiologia , Estresse Fisiológico , Ausência de Peso , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Aspergillus niger/ultraestrutura , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Fungos/fisiologia , Fungos/ultraestrutura , Perfilação da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/biossíntese , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Organelas/ultraestrutura , Penicillium chrysogenum/crescimento & desenvolvimento , Penicillium chrysogenum/metabolismo , Penicillium chrysogenum/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Esporos Fúngicos/crescimento & desenvolvimento
13.
Bioresour Technol ; 161: 149-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24704836

RESUMO

Transmission electron, confocal microscopy and FACS in conjunction with two different lipophilic fluorescent dyes, BODIPY 505/515 and Nile Red were used to describe the cellular development and lipid bodies formation in Aurantiochytrium sp. KRS101. TEM results revealed that multi-cellular spores were appeared in sporangium during early-exponential phase, and spores were matured in mid-exponential phase followed by release of spores from sporangium in late-exponential phase. TEM and FACS analyses proved that lipid bodies appeared, developed and degenerated in mid-exponential, early- and late-stationary phases, respectively. The staining results in FACS indicate that BODIPY 505/515 is more effective for the vital staining of intracellular lipid bodies than Nile Red. FACS based single cell sorting also showed healthy growth for BODIPY 505/515 stained cells than Nile Red stained cells. In addition, a quantitative baseline was established either for cell growth and/or lipid accumulation based on cell count, fatty acid contents/composition, and sectional/confocal images of KRS101.


Assuntos
Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos , Estramenópilas/química , Estramenópilas/fisiologia , Compostos de Boro , Ácidos Graxos/análise , Ionização de Chama , Citometria de Fluxo , Oxazinas , Estramenópilas/ultraestrutura
14.
J Biosci Bioeng ; 116(5): 638-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23735327

RESUMO

For over 2 decades, Escherichia coli has been successfully used for the production of various recombinant proteins. However, several technical limitations have influenced the extent of recombinant protein expression in the E. coli host because of (i) heterologous protein accumulation often observed in inactive inclusion bodies either in the cytoplasm or periplasm, or (ii) lytic activity of recombinant proteins, which causes cell lysis, that hinder high production yield. We developed a novel strategy for the efficient production of aggregation-prone proteins and lytic enzymes in the E. coli host. For this purpose, we used an anchored periplasmic expression (APEx) system, in which target proteins are produced in the periplasm and tethered on the inner membrane. Protein aggregation and lytic activity can be prevented through anchoring of individual proteins to the inner membrane. Two model proteins (aggregation-prone human leptin and lytic Pseudomonas fluorescens SIK W1 lipase) were examined, and both proteins were successfully produced and anchored to the inner membrane under optimized culture conditions. Upon expression, the inner membrane-anchored proteins were subjected to simple purification procedures; the proteins were confirmed to be of high purity and bioactivity.


Assuntos
Escherichia coli/citologia , Escherichia coli/genética , Proteínas Imobilizadas/metabolismo , Leptina/biossíntese , Lipase/biossíntese , Periplasma/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Biocatálise , Membrana Celular/metabolismo , Humanos , Proteínas Imobilizadas/biossíntese , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/isolamento & purificação , Corpos de Inclusão/metabolismo , Leptina/genética , Leptina/isolamento & purificação , Lipase/genética , Lipase/isolamento & purificação , Viabilidade Microbiana , Pseudomonas fluorescens/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
15.
Bioresour Technol ; 138: 30-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23612159

RESUMO

A comparative study of Chlamydomonas reinhardtii wild type CC124 and a cell wall-less mutant sta6-1 is described using FACS in conjunction with two different lipophilic fluorescent dyes, Nile Red and BODIPY 505/515. The results indicate that BODIPY 505/515 is more effective for the vital staining of intracellular lipid bodies and single cell sorting than Nile Red. While BODIPY 505/515 stained cells continued to grow after single cell sorting using FACS, Nile Red stained cells failed to recover from sorting. In addition, a comprehensive study was performed to establish a quantitative baseline for future studies for either lipid accumulation and/or microalgal growth by measuring various parameters such as cell count, size, fatty acid contents/composition, and optical/confocal images of the wild type and mutant.


Assuntos
Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Citometria de Fluxo/métodos , Espaço Intracelular/metabolismo , Lipídeos/química , Compostos de Boro/metabolismo , Tamanho Celular , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Cromatografia Gasosa , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Ionização de Chama , Fluorescência , Mutação/genética , Oxazinas/metabolismo , Coloração e Rotulagem , Amido/metabolismo
16.
J Ind Microbiol Biotechnol ; 40(7): 705-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23619971

RESUMO

For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e-GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e-GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e-GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Sequência de Bases , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Epitopos/química , Epitopos/imunologia , Escherichia coli/metabolismo , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Febre Aftosa/virologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/classificação , Glutationa Transferase/genética , Glutationa Transferase/imunologia , Glutationa Transferase/metabolismo , Imunização , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Reprodutibilidade dos Testes , Sorotipagem , Vacinas Virais/biossíntese , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia
17.
J Environ Manage ; 111: 142-9, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22846889

RESUMO

The treatment of effluents from textile industry with microorganisms, especially bacteria and fungi, has recently gained attention. The present study was conducted using white rot fungi Irpex lacteus, Trametes hirsuta, Trametes sp., and Lentinula edodes for the decolorization of reactive textile Levafix Blue E-RA granulate dye. I. lacteus resulted in the best decolorization and degradation of the dye within four days. Therefore, more detailed studies were carried out using I. lacteus. The decolorization was evaluated at various concentration, pH values, and temperatures. The activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were estimated to reveal the roles of enzymes in decolorization. The colorless nature of the fungal cells revealed that decolorization occurred through degradation, and confirmed by analysis of the metabolites by UV-visible spectroscopy and High Performance Liquid Chromatography after decolorization. The metabolites were identified by Gas Chromatography-Mass Spectrometry, and functional group analysis was performed by Fourier Transform Infrared Spectroscopy. The degraded dye metabolites were assessed for phytotoxicity using Vigna radiata and Brassica juncea, which demonstrated nontoxic nature of the metabolites formed after degradation of dye.


Assuntos
Corantes/metabolismo , Polyporales/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/prevenção & controle , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Lentinula/metabolismo , Mostardeira/efeitos dos fármacos , Mostardeira/metabolismo , Peroxidases/metabolismo , Polyporales/enzimologia , Especificidade da Espécie , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Indústria Têxtil , Fatores de Tempo , Trametes/metabolismo
18.
Mikrobiologiia ; 80(2): 275-86, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21675219

RESUMO

Biogeochemical and microbiological characterization of marine sediments taken from the Yellow Sea of South Korea was carried out. One hundred and thirty six bacterial strains were isolated, characterized and phylogenetic relationship was evaluated. The gene sequences of 16S rDNA regions were examined to study the phylogenetic analysis of bacterial community in the marine sediments. Among 136 isolates, 5 bacterial isolates were identified as novel members, remaining 131 isolates were fall into 5 major linkages of bacterial phyla represented as follows: Firmicutes, alpha, gamma-Proteobacteria, High G + C and Bacteroidetes. Bacterial community in sediments mainly dominated by Firmicutes (58.77%) and followed by gamma-Pateobacteria (38.16%). Gamma-Proteobacteria domain highly diverged and mainly consists of the genera Vibrio, Marinobacterium, Photobacterium, Pseudoalteromonas, Oceanisphaera, Halomonas, Alteromonas, Stenotrophomonas and Pseudomonas. Total N and Organic matter content in Yellow Sea of South Korea were relatively high. The Total-N content in the sediments was varied from 177.31 to 1974.96 (mg/kg) and organic matter ranged from 0.82 to 4.23 (g/100 g). The current research work provides clear explanation obtained for the phylogenetic affiliation of the culturable bacterial community in sediments of South Korean Yellow Sea and revealed the relationship with biogeochemical characteristics of the sediments.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Variação Genética , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , República da Coreia
19.
Protein Expr Purif ; 79(1): 60-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21511037

RESUMO

Human Fc receptors (FcγR) are membrane glycoproteins that are expressed on all immunologically active cells and have a well-defined role in regulating innate and adaptive immune responses by binding to the immunoglobulin G (IgG) antibody. Among the several classes of Fc receptors, FcγRIIa is the most widely expressed, and it serves as an important reagent in antibody engineering. Here, we report on high cell density cultivations (HCDC) of Escherichia coli for preparative scale production of FcγRIIa in a 6.6L bioreactor. Briefly, a pH-stat feeding strategy was employed, and two different cell densities (OD(600) of 46 and 100) were examined for the induction of FcγRIIa gene expression. When cells were induced at a high cell density (OD(600) of 100), the cell density increased to an OD(600) of 234 within 9h after induction, and a 2-fold higher production yield was obtained compared with that of induction at low cell density (OD(600) of 46). After simple purification steps including denaturation and refolding, 87.7 mg of soluble FcγRIIa that was more than 95% pure was obtained from a 20-mL culture with high recovery yield (≈54%). The biological activity of purified FcγRIIa was also confirmed by evaluating its interaction with all subclasses of IgG antibodies using an ELISA bioassay.


Assuntos
Escherichia coli/genética , Receptores de IgG/genética , Receptores de IgG/isolamento & purificação , Reatores Biológicos , Escherichia coli/citologia , Expressão Gênica , Humanos , Receptores de IgG/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
Biotechnol J ; 6(1): 16-27, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21170983

RESUMO

After the appearance of the first FDA-approved antibody 25 years ago, antibodies have become major therapeutic agents in the treatment of many human diseases, including cancer and infectious diseases, and the use of antibodies as therapeutic/diagnostic agents is expected to increase in the future. So far, a variety of strategies have been devised for engineering of these fascinating molecules to develop superior properties and functions. Recent progress in systems biology has provided more information about the structures and cellular networks of antibodies, and, in addition, recent development of biotechnology tools, particularly in regard to high-throughput screening, has made it possible to perform more intensive engineering on these substances. Based on a sound understanding and new technologies, antibodies are now being developed as more powerful drugs. In this review, we highlight the recent, significant progress that has been made in antibody engineering, with a particular focus on Fc engineering and glycoengineering for improved functions, and cellular engineering for enhanced production of antibodies in yeast and bacterial hosts.


Assuntos
Bactérias/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Leveduras/metabolismo , Bactérias/genética , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Proteínas Recombinantes/genética , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...