Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 75(9): 2152-2166, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164814

RESUMO

Quantitative genetic variation (QGV) represents a major component of adaptive potential and, if reduced toward range-edge populations, could prevent a species' expansion or adaptive response to rapid ecological change. It has been hypothesized that QGV will be lower at the range edge due to small populations-often the result of poor habitat quality-and potentially decreased gene flow. However, whether central populations are higher in QGV is unknown. We used a meta-analytic approach to test for a general QGV-range position relationship, including geographic and climatic distance from range centers. We identified 35 studies meeting our criteria, yielding nearly 1000 estimates of QGV (including broad-sense heritability, narrow-sense heritability, and evolvability) from 34 species. The relationship between QGV and distance from the geographic range or climatic niche center depended on the focal trait and how QGV was estimated. We found some evidence that QGV declines from geographic centers but that it increases toward niche edges; niche and geographic distances were uncorrelated. Nevertheless, few studies have compared QGV in both central and marginal regions or environments within the same species. We call for more research in this area and discuss potential research avenues related to adaptive potential in the context of global change.


Assuntos
Fluxo Gênico , Variação Genética , Ecossistema
2.
Evolution ; 68(5): 1270-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24433389

RESUMO

Closely related species (e.g., sister taxa) often occupy very different ecological niches and can exhibit large differences in geographic distributions despite their shared evolutionary history. Budding speciation is one process that may partially explain how differences in niche and distribution characteristics may rapidly evolve. Budding speciation is the process through which new species form as initially small colonizing populations that acquire reproductive isolation. This mode of species formation predicts that, at the time of speciation, sister species should have highly asymmetrical distributions. We tested this hypothesis in North American monkeyflowers, a diverse clade with a robust phylogeny, using data on geographical ranges, climate, and plant community attributes. We found that recently diverged sister pairs have highly asymmetrical ranges and niche breadths, relative to older sister pairs. Additionally, we found that sister species occupy distinct environmental niche positions, and that 80% of sister species have completely or partially overlapping distributions (i.e., are broadly sympatric). Together, these results suggest that budding speciation has occurred frequently in Mimulus, that it has likely taken place both inside the range and on the range periphery, and that observed divergences in habitat and resource use could be associated with speciation in small populations.


Assuntos
Meio Ambiente , Especiação Genética , Mimulus/genética , Isolamento Reprodutivo , Filogenia , Seleção Genética
3.
Ann N Y Acad Sci ; 1297: 29-43, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23981247

RESUMO

As the earth system moves to a novel state, model systems (experimental, observational, paleoecological) are needed to assess and improve the predictive accuracy of ecological models under environments with no contemporary analog. In recent years, we have intensively studied the no-analog plant associations and climates in eastern North America during the last deglaciation to better constrain their spatiotemporal distribution, test hypotheses about climatic and megaherbivory controls, and assess the accuracy of species- and community-level models. The formation of no-analog plant associations was asynchronous, beginning first in the south-central United States; at sites in the north-central United States, it is linked to declining megafaunal abundances. Insolation and temperature were more seasonal than present, creating climates currently nonexistent in North America, and shifting species-climate relationships for some taxa. These shifts pose a common challenge to empirical paleoclimatic reconstructions, species distribution models (SDMs), and conservation-optimization models based on SDMs. Steps forward include combining recent and paleoecological data to more fully describe species' fundamental niches, employing community-level models to model shifts in species interactions under no-analog climates, and assimilating paleoecological data with mechanistic ecosystem models. Accurately modeling species interactions under novel environments remains a fundamental challenge for all forms of ecological models.


Assuntos
Mudança Climática , Clima , Algoritmos , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecologia , Ecossistema , Fósseis , Gases , Geografia , Efeito Estufa , Modelos Teóricos , Pólen/química , Estações do Ano , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...