Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436491

RESUMO

More and more evidence shows how brain energy metabolism is the linkage between physiological and morphological synaptic plasticity and memory consolidation. Different types of memory are associated with differential inputs, each with specific inputs that are upstream diverse molecular cascades depending on the receptor activity. No matter how heterogeneous the response is, energy availability represents the lowest common denominator since all these mechanisms are energy consuming and the brain networks adapt their performance accordingly. Astrocytes exert a primary role in this sense by acting as an energy buffer; glycogen granules, a mechanism to store glucose, are redistributed at glance and conveyed to neurons via the Astrocyte-Neuron Lactate Shuttle (ANLS). Here, we review how different types of memory relate to the mechanisms of energy delivery in the brain.

2.
J Vis Exp ; (151)2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31609327

RESUMO

Serial sectioning and subsequent high-resolution imaging of biological tissue using electron microscopy (EM) allow for the segmentation and reconstruction of high-resolution imaged stacks to reveal ultrastructural patterns that could not be resolved using 2D images. Indeed, the latter might lead to a misinterpretation of morphologies, like in the case of mitochondria; the use of 3D models is, therefore, more and more common and applied to the formulation of morphology-based functional hypotheses. To date, the use of 3D models generated from light or electron image stacks makes qualitative, visual assessments, as well as quantification, more convenient to be performed directly in 3D. As these models are often extremely complex, a virtual reality environment is also important to be set up to overcome occlusion and to take full advantage of the 3D structure. Here, a step-by-step guide from image segmentation to reconstruction and analysis is described in detail.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica/métodos , Neuroglia/citologia , Neurônios/citologia , Realidade Virtual
3.
Curr Stem Cell Res Ther ; 12(2): 145-154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26521971

RESUMO

The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/instrumentação , Cerâmica/uso terapêutico , Nanocompostos/química , Polímeros/uso terapêutico , Ligamento Cruzado Anterior/fisiopatologia , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Reconstrução do Ligamento Cruzado Anterior/métodos , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/uso terapêutico , Cerâmica/síntese química , Humanos , Teste de Materiais , Nanocompostos/ultraestrutura , Polímeros/síntese química , Engenharia Tecidual/métodos
4.
CNS Neurol Disord Drug Targets ; 15(10): 1306-1324, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27488421

RESUMO

Despite the numerous challenges associated with the application of nanotechnology in neuroscience, it promises to have a significant impact on our understanding of how the nervous system works, how it fails in disease, and the development of earlier and less-invasive diagnostic procedures so we can intervene in the pre-clinical stage of neurological disease before extensive neurological damage has taken place. Ultimately, both the challenges and opportunities that nanotechnology presents stem from the fact that this technology provides a way to interact with neural cells at the molecular level. In this review we provide a neurobiological overview of key neurological disorders, describe the different types of nanomaterials in use and discuss their current and potential uses in neuroscience. We also discuss the issue of toxicity in these nanomaterials. This review presents many of the different applications that advances in nanotechnology are having in the field of neurological sciences, especially the high impact they are having in the development of new treatment modalities for neurological disorders that will induce the expected physiological response while minimizing undesirable secondary effects. In conclusion, we weigh in on what the promises and challenges are for future development in this groundbreaking field.


Assuntos
Nanoestruturas/uso terapêutico , Doenças do Sistema Nervoso/terapia , Neurologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...