Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769899

RESUMO

Scientists are drawn to the new green composites because they may demonstrate qualities that are comparable to those of composites made of synthetic fibers due to concerns about environmental contamination. In this work, the potential for using the produced green composite in different buckling load-bearing structural applications is explored. The work on composite buckling characteristics is vital because one needs to know the composite's structural stability since buckling leads to structural instability. The buckling properties of composite specimens with epoxy as the matrix and chemically treated cellulose microfibrils as reinforcements are examined numerically in this study when exposed to axial compressive stress. The numerical model is first created based on the finite element method model. Its validity is checked using ANSYS software by contrasting the critical buckling loads determined through research for three samples. The numerical findings acquired using the finite element method are then contrasted with those produced using the regression equation derived from the ANOVA. The utilization of the created green composite in different buckling load-bearing structural applications is investigated in this study. As a result of the green composite's unaltered buckling properties compared to synthetic composites, it has the potential to replace numerous synthetic composites, improving environmental sustainability.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500735

RESUMO

Composite materials have a wide range of applications in emerging eco-friendly environments. Composites that created from naturally available materials are easily decomposed over time and very cost-effective. Fly ash and sugarcane fiber are widely available waste materials produced on a massive scale. This research was aimed to find an optimal mixture of reinforced composites (fly ash, sugarcane fiber and CNTs) in order to maximize yield strength, ultimate tensile strength and Young's modulus using a Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D). Optimizing one objective may have a negative impact on another objective, so the authors used the sophisticated MOEA/D algorithm to simultaneously find optimal values on all three objectives. The Design of Experiments (DOE) method was performed using ANOVA, and then regression equations were generated. The regression equations were optimized using the MOEA/D algorithm to obtain optimal values. Using the optimal compositional values produced by the algorithm, materials were fabricated. The fabricated materials were tested using a Shimadzu UTM machine to cross-validate the findings. A combination of 0.2 wt.% of fly ash, 2 wt.% of SCF, and 0.39 wt.% of CNTs showed a maximum yield strength of 7.52 MPa and Young's modulus of 1281.18 MPa, with a quite considerable ultimate tensile strength of 10.54 MPa compared with the optimized results obtained through the response surface methodology.

3.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566869

RESUMO

Aluminium-based fibre-metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre-metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...