Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037449

RESUMO

In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.

2.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180251

RESUMO

The effect of ring stiffness and pressure on the glassy dynamics of a thermal assembly of two-dimensional ring polymers is investigated using extensive coarse-grained molecular dynamics simulations. In all cases, dynamical slowing down is observed with increasing pressure, and thereby, a phase space for equilibrium dynamics is identified in the plane of the obtained monomer density and ring stiffness. When the rings are highly flexible, i.e., have low ring stiffness, glassiness sets in via the crowding of crumpled polymers, which take on a globular form. In contrast, at large ring stiffness, when the rings tend to have large asphericity under compaction, we observe the emergence of local domains having orientational ordering at high pressures. Therefore, our simulations highlight how varying the deformability of rings leads to contrasting mechanisms in driving the system toward the glassy regime.

3.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38010332

RESUMO

Using extensive molecular dynamics simulations, we obtain the conformational phase diagram of a charged polymer in the presence of oppositely charged counterions and neutral attractive crowders for monovalent, divalent, and trivalent counterion valencies. We demonstrate that the charged polymer can exist in three phases: (1) an extended phase for low charge densities and weak polymer-crowder attractive interactions [Charged Extended (CE)]; (2) a collapsed phase for high charge densities and weak polymer-crowder attractive interactions, primarily driven by counterion condensation [Charged Collapsed due to Intra-polymer interactions [(CCI)]; and (3) a collapsed phase for strong polymer-crowder attractive interactions, irrespective of the charge density, driven by crowders acting as bridges or cross-links [Charged Collapsed due to Bridging interactions [(CCB)]. Importantly, simulations reveal that the interaction with crowders can induce collapse, despite the presence of strong repulsive electrostatic interactions, and can replace condensed counterions to facilitate a direct transition from the CCI and CE phases to the CCB phase.

4.
J Chem Phys ; 158(11): 114903, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948827

RESUMO

Extensive coarse-grained molecular dynamics simulations are performed to investigate the conformational phase diagram of a neutral polymer in the presence of attractive crowders. We show that, for low crowder densities, the polymer predominantly shows three phases as a function of both intra-polymer and polymer-crowder interactions: (1) weak intra-polymer and weak polymer-crowder attractive interactions induce extended or coil polymer conformations (phase E), (2) strong intra-polymer and relatively weak polymer-crowder attractive interactions induce collapsed or globular conformations (phase CI), and (3) strong polymer-crowder attractive interactions, regardless of intra-polymer interactions, induce a second collapsed or globular conformation that encloses bridging crowders (phase CB). The detailed phase diagram is obtained by determining the phase boundaries delineating the different phases based on an analysis of the radius of gyration as well as bridging crowders. The dependence of the phase diagram on strength of crowder-crowder attractive interactions and crowder density is clarified. We also show that when the crowder density is increased, a third collapsed phase of the polymer emerges for weak intra-polymer attractive interactions. This crowder density-induced compaction is shown to be enhanced by stronger crowder-crowder attraction and is different from the depletion-induced collapse mechanism, which is primarily driven by repulsive interactions. We also provide a unified explanation of the observed re-entrant swollen/extended conformations of the earlier simulations of weak and strongly self-interacting polymers in terms of crowder-crowder attractive interactions.

5.
Langmuir ; 39(12): 4406-4412, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36920370

RESUMO

Understanding the emergence and role of lipid packing defects in the detection and subsequent partitioning of antimicrobial agents into bacterial membranes is essential for gaining insights into general antimicrobial mechanisms. Herein, using methacrylate polymers as a model platform, we investigate the effects of inclusion of various functional groups in the biomimetic antimicrobial polymer design on the aspects of lipid packing defects in model bacterial membranes. Two antimicrobial polymers are considered: ternary polymers composed of cationic, hydrophobic, and polar moieties and binary polymers with only cationic and hydrophobic moieties. We find that differing modes of insertion of these two polymers lead to different packing defects in the bacterial membrane. While insertion of both binary and ternary polymers leads to an enhanced number of deep defects in the upper leaflet, shallow defects are moderately enhanced upon interaction with ternary polymers only. We provide conclusive evidence that insertion of antimicrobial polymers in bacterial membrane is preceded by sensing of interfacial lipid packing defects. Our simulation results show that the hydrophobic groups are inserted at a single colocalized deep defect site for both binary and ternary polymers. However, the presence of polar groups in the ternary polymers use the shallow defects close to the lipid-water interface, in addition, to insert into the membrane, which leads to a more folded conformation of the ternary polymer in the membrane environment, and hence a different membrane partitioning mechanism compared to the binary polymer, which acquires an amphiphilic conformation.


Assuntos
Anti-Infecciosos , Polímeros , Polímeros/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Metacrilatos/química , Conformação Molecular , Lipídeos , Bicamadas Lipídicas/química
6.
Proteins ; 91(6): 831-846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36645312

RESUMO

The AMP-activated protein kinase (AMPK) is known to be activated by the protein tyrosine phosphatase non-receptor type 12 (PTP-PEST) under hypoxic conditions. This activation is mediated by tyrosine dephosphorylation of the AMPKα subunit. However, the identity of the phosphotyrosine residues that PTP-PEST dephosphorylates remains unknown. In this study, we first predicted the structure of the complex of the AMPKα2 subunit and PTP-PEST catalytic domain using bioinformatics tools and further confirmed the stability of the complex using molecular dynamics simulations. Evaluation of the protein-protein interfaces indicated that residue Tyr232 is the most likely dephosphorylation site on AMPKα2. In addition, we explored the effect of phosphorylation of PTP-PEST residue Tyr64 on the stability of the complex. Phosphorylation of the highly conserved Tyr64, an interface residue, enhances the stability of the complex via the rearrangement of a network of electrostatic interactions in conjunction with conformational changes in the catalytic WPD loop. We generated a phosphomimetic (PTP-PEST-Y64D) mutant and used co-immunoprecipitation to study the effect of PTP-PEST phosphorylation on AMPKα2 binding. The mutant exhibited an increased affinity for AMPKα2 and corroborated the in-silico predictions. Together, our findings present a plausible structural basis of AMPK regulation by PTP-PEST and show how phosphorylation of PTP-PEST affects its interaction with AMPKα2.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Tirosina Fosfatase não Receptora Tipo 12 , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Tirosina Fosfatases/química , Fosforilação , Domínio Catalítico
8.
Artigo em Inglês | MEDLINE | ID: mdl-36300561

RESUMO

Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Polímeros/química , Biomimética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
9.
Soft Matter ; 18(15): 2959-2967, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348146

RESUMO

Using extensive molecular dynamics simulations, we investigate the slowdown of dynamics in a 3D system of ring polymers by varying the ambient pressure and the stiffness of the rings. Our study demonstrates that the stiffness of the rings determines the dynamics of the ring polymers, leading to glassiness at lower pressures for stiffer rings. The threading of the ring polymers, a unique feature that emerges only due to the topological nature of such polymers in three dimensions, is shown to be the determinant feature of dynamical slowdown, albeit only in a certain stiffness range. Our results suggest a possible framework for exploring the phase space spanned by ring stiffness and pressure to obtain spontaneously emerging topologically constrained polymer glasses.

10.
J Membr Biol ; 255(2-3): 129-142, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218393

RESUMO

The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.


Assuntos
Vírus da Hepatite A , Peptídeos , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Vírus da Hepatite A/química , Vírus da Hepatite A/metabolismo , Membranas , Domínios Proteicos
11.
Proteins ; 90(5): 1179-1189, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35006623

RESUMO

Mutation of an invariant aspartate residue in the binding pocket of 14-3-3ζ isoform to alanine dramatically reduced phosphopeptide binding and induced opening of the binding pocket. Here we use extensive molecular dynamics simulations to understand the role of D124 residue in ligand binding. The simulations show that in the absence of phosphopeptide, the D124A mutation leads to binding pocket reorganization including widening up of the binding pocket at the major groove and repositioning of N173, a key residue that interacts with the main chain of phosphopeptide. These structural changes would interfere with the efficient binding of the peptide, corroborating the experimental observations. Both gain and loss of electrostatic interactions in the form of salt bridges strongly indicate a rearrangement of the network of interactions within the binding pocket. Limited proteolysis coupled mass spectrometry (lip-MS) of the apo and holo forms of wild type (WT) and mutant protein shows a peptide binding helix otherwise buried in the WT protein was particularly accessible to trypsin in the apo form of the mutant protein and the region was mapped to 158-186 amino acid residues of 14-3-3ζ. These results further confirm the dynamic nature of D124A mutant. Unlike other basic residues, the invariant D124 facilitates peptide binding by maintaining the geometry of interacting residues and by enforcing the structural integrity of amphipathic pocket.


Assuntos
Proteínas 14-3-3/química , Fosfopeptídeos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Mutação , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Ligação Proteica
12.
J Phys Condens Matter ; 34(4)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352747

RESUMO

Extensive molecular dynamics simulations, using simple charged polymer models, have been employed to probe the collapse kinetics of a single flexible polyelectrolyte (PE) chain under implicit poor solvent conditions. We investigate the role of the charged nature of PE chain (A), valency of counterions (Z) on the kinetics of such PE collapse. Our study shows that the collapse kinetics of charged polymers are significantly different from those of the neutral polymer and that the finite-size scaling behavior of PE collapse times does not follow the Rouse scaling as observed in the case of neutral polymers. The critical exponent for charged PE chains is found to be less than that of neutral polymers and also exhibits dependence on counterion valency. The coarsening of clusters along the PE chain suggests a multi-stage collapse and exhibits opposite behavior of exponents compared to neutral polymers: faster in the early stages and slower in the later stages of collapse.

13.
Soft Matter ; 17(34): 7963-7977, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34378608

RESUMO

Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.


Assuntos
Vírus da Hepatite A , Membrana Celular , Colesterol , Bicamadas Lipídicas , Lipídeos de Membrana , Simulação de Dinâmica Molecular , Peptídeos
14.
Soft Matter ; 17(8): 2090-2103, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439212

RESUMO

Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin.


Assuntos
Anti-Infecciosos , Polímeros , Biomimética , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Proteínas Citotóxicas Formadoras de Poros
15.
RSC Adv ; 11(36): 22044-22056, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480841

RESUMO

Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the net charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as "adhesives" which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles.

16.
J Phys Condens Matter ; 33(6): 064003, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33105118

RESUMO

Using detailed atomistic simulations, we explore the morphological characteristics of aggregates formed in solution phase by ternary biomimetic antimicrobial (AM) methacrylate polymers, composed of hydrophobic, charged cationic and polar functional groups and compare it with aggregate morphologies of binary methacrylate polymers, composed only of hydrophobic and charged cationic functional groups. The effect of sequence of the constituent functional groups on aggregate conformation is also studied by considering random and block sequences along the polymer backbone. Our results show that while binary polymers tend to form robust aggregates, replacing some of the hydrophobic groups with overall charge neutral polar groups weakens the aggregate considerably, leading to increased conformational fluctuations and formation of loose-packed, open aggregates, particularly in the case of random ternary polymers. Interaction energy calculations clearly suggest that the role of inclusion of polar groups in ternary polymers is two-fold: (1) to reduce possible strong local concentration of hydrophobic groups and 'smear' the overall hydrophobicity along the polymer backbone to increase the solubility of the polymers (2) to compensate the loss of attractive hydrophobic interactions by forming attractive electrostatic interactions with the charged groups and contribute to aggregation formation, albeit weak. Given that most of the naturally occurring AM peptides have contributions from all the three functional groups, this study elucidates the functionally tuneable role of inclusion of polar groups in the way AM agents interact with each other in solution phase, which can eventually dictate their partitioning behaviour into bacterial and mammalian membranes.


Assuntos
Anti-Infecciosos , Materiais Biomiméticos , Metacrilatos , Interações Hidrofóbicas e Hidrofílicas , Polímeros
17.
J Chem Phys ; 151(7): 074901, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438700

RESUMO

Extensive molecular dynamics simulations have been employed to probe the effects of salts on the kinetics and dynamics of early-stage aggregated structures of steric zipper peptides in water. The simulations reveal that the chemical identity and valency of cation in the salt play a crucial role in aggregate dynamics and morphology of the peptides. Sodium ions induce the most aggregated structures, but this is not replicated equivalently by potassium ions which are also monovalent. Divalent magnesium ions induce aggregation but to a lesser extent than that of sodium, and their interactions with the charged peptides are also significantly different. The aggregate morphology in the presence of monovalent sodium ions is a compact structure with interpenetrating peptides, which differs from the more loosely connected peptides in the presence of either potassium or magnesium ions. The different ways in which the cations effectively renormalize the charges of peptides are suggested to be the cause of the differential effects of different salts studied here. These simulations underscore the importance of understanding both the valency and nature of salts in biologically relevant aggregated structures.

18.
J Membr Biol ; 252(4-5): 331-342, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187156

RESUMO

The membrane-active protein Nogo-66 is found to induce interdigitation in dimyristoylphosphocholine membranes. Extensive molecular dynamics simulations have been employed to probe the interactions of Nogo-66 with these model membranes. This phase change happens when the temperature is close to the main transition temperature of the membrane (Tm) and only in the presence of the protein. No similar interdigitation of the membrane lipids was observed temperatures well above Tm in the presence of the protein. In addition, in protein-free simulations, no interdigitation of the membrane lipids was found both at temperatures near or well above Tm indicating that the observed effect is caused by the interactions of Nogo-66 with the membrane. Analysis of the simulations suggest protein-membrane interactions, even if transient, alter the lifetimes of lipid head defects and can potentially alter the effective Tm and cause interdigitation. This study emphasize the importance of membrane-active proteins and their interactions with membranes leading to phase transitions which would affect other membrane-related processes such as domain formation.


Assuntos
Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Proteínas Nogo/química , Humanos , Domínios Proteicos
19.
J Chem Phys ; 151(24): 244901, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893876

RESUMO

We present results from molecular dynamics simulations of a spherically confined neutral polymer in the presence of crowding particles, studying polymer shapes and conformations as a function of the strength of the attraction to the confining wall, solvent quality, and the density of crowders. The conformations of the polymer under good solvent conditions are weakly dependent on crowder particle density, even when the polymer is strongly confined. In contrast, under poor solvent conditions, when the polymer assumes a collapsed conformation when unconfined, it can exhibit transitions to two different adsorbed phases, when either the interaction with the wall or the density of crowder particles is changed. One such transition involves a desorbed collapsed phase change to an adsorbed extended phase as the attraction of the polymer towards the confining wall is increased. Such an adsorbed extended phase can exhibit a second transition to an ordered adsorbed collapsed phase as the crowder particle density is increased. The ordered adsorbed collapsed phase of the polymer differs significantly in its structure from the desorbed collapsed phase. We revisit the earlier understanding of the adsorption of confined polymers on attractive surfaces in light of our results.

20.
Sci Rep ; 8(1): 12976, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154518

RESUMO

The effects of phosphorylation of a serine residue on the structural and dynamic properties of Ras-like protein, Rap, and its interactions with effector protein Ras binding domain (RBD) of Raf kinase, in the presence of GTP, are investigated via molecular dynamics simulations. The simulations show that phosphorylation significantly effects the dynamics of functional loops of Rap which participate in the stability of the complex with effector proteins. The effects of phosphorylation on Rap are significant and detailed conformational analysis suggest that the Rap protein, when phosphorylated and with GTP ligand, samples different conformational space as compared to non-phosphorylated protein. In addition, phosphorylation of SER11 opens up a new cavity in the Rap protein which can be further explored for possible drug interactions. Residue network analysis shows that the phosphorylation of Rap results in a community spanning both Rap and RBD and strongly suggests transmission of allosteric effects of local alterations in Rap to distal regions of RBD, potentially affecting the downstream signalling. Binding free energy calculations suggest that phosphorylation of SER11 residue increases the binding between Rap and Raf corroborating the network analysis results. The increased binding of the Rap-Raf complex can have cascading effects along the signalling pathways where availability of Raf can influence the oncogenic effects of Ras proteins. These simulations underscore the importance of post translational modifications like phosphorylation on the functional dynamics in proteins and can be an alternative to drug-targeting, especially in notoriously undruggable oncoproteins belonging to Ras-like GTPase family.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-raf/química , Proteínas rap1 de Ligação ao GTP/química , Regulação Alostérica , Humanos , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...