Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 37(12): 1594-1609, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326437

RESUMO

Personalized medicine for cancer patients requires a deep understanding of the underlying genetics that drive cancer and the subsequent identification of predictive biomarkers. To discover new genes and pathways contributing to oncogenesis and therapy resistance in HER2+ breast cancer, we performed Mouse Mammary Tumor Virus (MMTV)-induced insertional mutagenesis screens in ErbB2/cNeu-transgenic mouse models. The screens revealed 34 common integration sites (CIS) in mammary tumors of MMTV-infected mice, highlighting loci with multiple independent MMTV integrations in which potential oncogenes are activated, most of which had never been reported as MMTV CIS. The CIS most strongly associated with the ErbB2-transgenic genotype was the locus containing Eras (ES cell-expressed Ras), a constitutively active RAS-family GTPase. We show that upon expression, Eras acts as a potent oncogenic driver through hyperactivation of the PI3K/AKT pathway, in contrast to other RAS proteins that signal primarily via the MAPK/ERK pathway and require upstream activation or activating mutations to induce signaling. We additionally show that ERAS synergistically enhances HER2-induced tumorigenesis and, in this role, can functionally replace ERBB3/HER3 by acting as a more powerful activator of PI3K/AKT signaling. Although previously reported as pseudogene in humans, we observed ERAS RNA and protein expression in a substantial subset of human primary breast carcinomas. Importantly, we show that ERAS induces primary resistance to the widely used HER2-targeting drugs Trastuzumab (Herceptin) and Lapatinib (Tykerb/Tyverb) in vivo, and is involved in acquired resistance via selective upregulation during treatment in vitro, indicating that ERAS may serve as a novel clinical biomarker for PI3K/AKT pathway hyperactivation and HER2-targeted therapy resistance.


Assuntos
Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Mamárias Experimentais/patologia , Mutagênese Insercional/fisiologia , Proteína Oncogênica p21(ras)/fisiologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Cultivadas , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Proteína Oncogênica p21(ras)/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
2.
PLoS One ; 8(5): e62113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690930

RESUMO

Cancer develops through a multistep process in which normal cells progress to malignant tumors via the evolution of their genomes as a result of the acquisition of mutations in cancer driver genes. The number, identity and mode of action of cancer driver genes, and how they contribute to tumor evolution is largely unknown. This study deployed the Mouse Mammary Tumor Virus (MMTV) as an insertional mutagen to find both the driver genes and the networks in which they function. Using deep insertion site sequencing we identified around 31000 retroviral integration sites in 604 MMTV-induced mammary tumors from mice with mammary gland-specific deletion of Trp53, Pten heterozygous knockout mice, or wildtype strains. We identified 18 known common integration sites (CISs) and 12 previously unknown CISs marking new candidate cancer genes. Members of the Wnt, Fgf, Fgfr, Rspo and Pdgfr gene families were commonly mutated in a mutually exclusive fashion. The sequence data we generated yielded also information on the clonality of insertions in individual tumors, allowing us to develop a data-driven model of MMTV-induced tumor development. Insertional mutations near Wnt and Fgf genes mark the earliest "initiating" events in MMTV induced tumorigenesis, whereas Fgfr genes are targeted later during tumor progression. Our data shows that insertional mutagenesis can be used to discover the mutational networks, the timing of mutations, and the genes that initiate and drive tumor evolution.


Assuntos
Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Genótipo , Humanos , Neoplasias Mamárias Experimentais/virologia , Camundongos , Mutagênese Insercional , PTEN Fosfo-Hidrolase/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...