Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
EJNMMI Res ; 14(1): 31, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528239

RESUMO

BACKGROUND: Accurate diagnosis of axillary lymph node (ALN) metastases is essential for prognosis and treatment planning in breast cancer. Evaluation of ALN is done by ultrasound, which is limited by inter-operator variability, and by sentinel lymph node biopsy and/or ALN dissection, none of which are without risks and/or long-term complications. It is known that conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has limited sensitivity for ALN metastases. However, a recently developed dynamic whole-body (D-WB) [18F]FDG PET/CT scanning protocol, allowing for imaging of tissue [18F]FDG metabolic rate (MRFDG), has been shown to have the potential to increase lesion detectability. The study purpose was to examine detectability of malignant lesions in D-WB [18F]FDG PET/CT compared to conventional [18F]FDG PET/CT. RESULTS: This study prospectively included ten women with locally advanced breast cancer who were referred for an [18F]FDG PET/CT as part of their diagnostic work-up. They all underwent D-WB [18F]FDG PET/CT, consisting of a 6 min single bed dynamic scan over the chest region started at the time of tracer injection, a 64 min dynamic WB PET scan consisting of 16 continuous bed motion passes, and finally a contrast-enhanced CT scan, with generation of MRFDG parametric images. Lesion visibility was assessed by tumor-to-background and contrast-to-noise ratios using volumes of interest isocontouring tumors with a set limit of 50% of SUVmax and background volumes placed in the vicinity of tumors. Lesion visibility was best in the MRFDG images, with target-to-background values 2.28 (95% CI: 2.04-2.54) times higher than target-to-background values in SUV images, and contrast-to-noise values 1.23 (95% CI: 1.12-1.35) times higher than contrast-to-noise values in SUV images. Furthermore, five imaging experts visually assessed the images and three additional suspicious lesions were found in the MRFDG images compared to SUV images; one suspicious ALN, one suspicious parasternal lymph node, and one suspicious lesion located in the pelvic bone. CONCLUSIONS: D-WB [18F]FDG PET/CT with MRFDG images show potential for improved lesion detectability compared to conventional SUV images in locally advanced breast cancer. Further validation in larger cohorts is needed. CLINICAL TRIAL REGISTRATION: The trial is registered in clinicaltrials.gov, NCT05110443, https://www. CLINICALTRIALS: gov/study/NCT05110443?term=NCT05110443&rank=1 .

2.
EJNMMI Res ; 14(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436824

RESUMO

BACKGROUND: Correct classification of estrogen receptor (ER) status is essential for prognosis and treatment planning in patients with breast cancer (BC). Therefore, it is recommended to sample tumor tissue from an accessible metastasis. However, ER expression can show intra- and intertumoral heterogeneity. 16α-[18F]fluoroestradiol ([18F]FES) Positron Emission Tomography/Computed Tomography (PET/CT) allows noninvasive whole-body (WB) identification of ER distribution and is usually performed as a single static image 60 min after radiotracer injection. Using dynamic whole-body (D-WB) PET imaging, we examine [18F]FES kinetics and explore whether Patlak parametric images ( K i ) are quantitative and improve lesion visibility. RESULTS: This prospective study included eight patients with metastatic ER-positive BC scanned using a D-WB PET acquisition protocol. The kinetics of [18F]FES were best characterized by the irreversible two-tissue compartment model in tumor lesions and in the majority of organ tissues. K i values from Patlak parametric images correlated with K i values from the full kinetic analysis, r2 = 0.77, and with the semiquantitative mean standardized uptake value (SUVmean), r2 = 0.91. Furthermore, parametric K i images had the highest target-to-background ratio (TBR) in 162/164 metastatic lesions and the highest contrast-to-noise ratio (CNR) in 99/164 lesions compared to conventional SUV images. TBR was 2.45 (95% confidence interval (CI): 2.25-2.68) and CNR 1.17 (95% CI: 1.08-1.26) times higher in K i images compared to SUV images. These quantitative differences were seen as reduced background activity in the K i images. CONCLUSION: [18F]FES uptake is best described by an irreversible two-tissue compartment model. D-WB [18F]FES PET/CT scans can be used for direct reconstruction of parametric K i images, with superior lesion visibility and K i values comparable to K i values found from full kinetic analyses. This may aid correct ER classification and treatment decisions. Trial registration ClinicalTrials.gov: NCT04150731, https://clinicaltrials.gov/study/NCT04150731.

3.
Nat Commun ; 15(1): 2088, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453924

RESUMO

Metastatic prostate cancer (PCa) poses a significant therapeutic challenge with high mortality rates. Utilizing CRISPR-Cas9 in vivo, we target five potential tumor suppressor genes (Pten, Trp53, Rb1, Stk11, and RnaseL) in the mouse prostate, reaching humane endpoint after eight weeks without metastasis. By further depleting three epigenetic factors (Kmt2c, Kmt2d, and Zbtb16), lung metastases are present in all mice. While whole genome sequencing reveals few mutations in coding sequence, RNA sequencing shows significant dysregulation, especially in a conserved genomic region at chr5qE1 regulated by KMT2C. Depleting Odam and Cabs1 in this region prevents metastasis. Notably, the gene expression signatures, resulting from our study, predict progression-free and overall survival and distinguish primary and metastatic human prostate cancer. This study emphasizes positive genetic interactions between classical tumor suppressor genes and epigenetic modulators in metastatic PCa progression, offering insights into potential treatments.


Assuntos
Sistemas CRISPR-Cas , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma , Família Multigênica
4.
Hepatology ; 79(5): 1065-1074, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088886

RESUMO

BACKGROUND AND AIMS: Trientine (TRI) and D-penicillamine (PEN) are used to treat copper overload in Wilson disease. Their main mode of action is thought to be through the facilitation of urinary copper excretion. In a recent study, TRI was noninferior to PEN despite lower 24-hour urinary copper excretion than PEN. We tested whether TRI and/or PEN also inhibit intestinal copper absorption. APPROACH AND RESULTS: Sixteen healthy volunteers were examined with positron emission tomography (PET)/CT 1 and 15 hours after an oral Copper-64 ( 64 Cu) dose. They then received 7 days of either PEN or TRI (trientine tetrahydrochloride), after which the 64 Cu PET/CT scans were repeated. Venous blood samples were also collected. Pretreatment to posttreatment changes of the hepatic 64 Cu uptake reflect the effect of drugs on intestinal absorption. 64 Cu activity was normalized to dose and body weight and expressed as the mean standard uptake value. TRI (n=8) reduced hepatic 64 Cu activity 1 hour after 64 Cu dose from 6.17 (4.73) to 1.47 (2.97) standard uptake value, p <0.02, and after 15 hours from 14.24 (3.09) to 6.19 (3.43), p <0.02, indicating strong inhibition of intestinal 64 Cu absorption. PEN (n=8) slightly reduced hepatic standard uptake value at 15 hours, from 16.30 (5.63) to 12.17 (1.44), p <0.04. CONCLUSIONS: In this mechanistic study, we show that TRI inhibits intestinal copper absorption, in addition to its cupriuretic effect. In contrast, PEN has modest effects on the intestinal copper absorption. This may explain why TRI and PEN are equally effective although urinary copper excretion is lower with TRI. The study questions whether the same therapeutic targets for 24-hour urinary excretion apply to both drugs.


Assuntos
Degeneração Hepatolenticular , Penicilamina , Humanos , Penicilamina/farmacologia , Penicilamina/uso terapêutico , Trientina/farmacologia , Trientina/uso terapêutico , Cobre , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Cobre/uso terapêutico , Degeneração Hepatolenticular/tratamento farmacológico , Tomografia por Emissão de Pósitrons
5.
J Hepatol ; 80(4): 586-595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081365

RESUMO

BACKGROUND & AIMS: In Wilson disease (WD), copper accumulates in the liver and brain causing disease. Bis-choline tetrathiomolybdate (TTM) is a potent copper chelator that may be associated with a lower risk of inducing paradoxical neurological worsening than conventional therapy for neurologic WD. To better understand the mode of action of TTM, we investigated its effects on copper absorption and biliary excretion. METHODS: In a double-blind randomized setting, hepatic 64Cu activity was examined after orally administered 64Cu by PET/CT in 16 healthy volunteers before and after seven days of TTM treatment (15 mg/d) or placebo. Oral 64Cu was administered one hour after the final TTM dose. Changes in hepatic 64Cu activity reflected changes in intestinal 64Cu uptake. Additionally, in four patients with WD, the distribution of 64Cu in venous blood, liver, gallbladder, kidney, and brain was followed after i.v. 64Cu dosing for up to 68 hours before and after seven days of TTM (15 mg/day), using PET/MRI. Increased gallbladder 64Cu activity was taken as evidence of increased biliary 64Cu excretion. RESULTS: In healthy volunteers, TTM reduced intestinal 64Cu uptake by 82% 15 hours after the oral 64Cu dose. In patients with WD, gallbladder 64Cu activity was negligible before and after TTM, while TTM effectively retained 64Cu in the blood, significantly reduced hepatic 64Cu activity at all time-points and significantly reduced cerebral 64Cu activity two hours after the intravenous 64Cu dose. CONCLUSIONS: While we did not show an increase in biliary excretion of 64Cu following TTM administration, we demonstrated that TTM effectively inhibited most intestinal 64Cu uptake and retained 64Cu in the blood stream, limiting the exposure of organs like the liver and brain to 64Cu. IMPACT AND IMPLICATIONS: Bis-choline tetrathiomolybdate (TTM) is an investigational copper chelator being developed for the treatment of Wilson disease. In animal models of Wilson disease, TTM has been shown to facilitate biliary copper excretion. In the present human study, TTM surprisingly did not facilitate biliary copper excretion but instead reduced intestinal copper uptake to a clinically significant degree. Our study builds on our understanding of human copper metabolism and the mechanism of action of TTM.


Assuntos
Degeneração Hepatolenticular , Molibdênio , Animais , Humanos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Voluntários Saudáveis , Quelantes/farmacologia , Colina
6.
Cancer Lett ; 579: 216480, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37931834

RESUMO

Glioblastoma (GBM) is an aggressive brain tumor with a median survival of 15 months and has limited treatment options. Immunotherapy with checkpoint inhibitors has shown minimal efficacy in combating GBM, and large clinical trials have failed. New immunotherapy approaches and a deeper understanding of immune surveillance of GBM are needed to advance treatment options for this devastating disease. In this study, we used two preclinical models of GBM: orthotopically delivering either GBM stem cells or employing CRISPR-mediated tumorigenesis by adeno-associated virus, to establish immunologically proficient and non-inflamed tumors, respectively. After tumor development, the innate immune system was activated through long-term STING activation by a pharmacological agonist, which reduced tumor progression and prolonged survival. Recruitment and activation of cytotoxic T-cells were detected in the tumors, and T-cell specificity towards the cancer cells was observed. Interestingly, prolonged STING activation altered the tumor vasculature, inducing hypoxia and activation of VEGFR, as measured by a kinome array and VEGF expression. Combination treatment with anti-PD1 did not provide a synergistic effect, indicating that STING activation alone is sufficient to activate immune surveillance and hinder tumor development through vascular disruption. These results guide future studies to refine innate immune activation as a treatment approach for GBM, in combination with anti-VEGF to impede tumor progression and induce an immunological response against the tumor.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunoterapia/métodos , Microambiente Tumoral , Imunidade Inata
7.
JHEP Rep ; 5(11): 100916, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37886434

RESUMO

Background & Aims: In Wilson disease (WD), copper accumulation and increased non-ceruloplasmin-bound copper in plasma lead to liver and brain pathology. To better understand the fate of non-ceruloplasmin-bound copper, we used PET/CT to examine the whole-body distribution of intravenously injected 64-copper (64Cu). Methods: Eight patients with WD, five heterozygotes, and nine healthy controls were examined by dynamic PET/CT for 90 min and static PET/CT up to 20 h after injection. We measured 64Cu activity in blood and tissue and quantified the kinetics by compartmental analysis. Results: Initially, a large fraction of injected 64Cu was distributed to extrahepatic tissues, especially skeletal muscle. Thus, across groups, extrahepatic tissues accounted for 45-58% of the injected dose (%ID) after 10 min, and 45-55% after 1 h. Kinetic analysis showed rapid exchange of 64Cu between blood and muscle as well as adipose tissue, with 64Cu retention in a secondary compartment, possibly mitochondria. This way, muscle and adipose tissue may protect the brain from spikes in non-ceruloplasmin-bound copper. Tiny amounts of cerebral 64Cu were detected (0.2%ID after 90 min and 0.3%ID after 6 h), suggesting tight control of cerebral copper in accordance with a cerebral clearance that is 2-3-fold lower than in muscle. Compared to controls, patients with WD accumulated more hepatic copper 6-20 h after injection, and also renal copper at 6 h. Conclusion: Non-ceruloplasmin-bound copper is initially distributed into a number of tissues before being redistributed slowly to the eliminating organ, the liver. Cerebral uptake of copper is extremely slow and likely highly regulated. Our findings provide new insights into the mechanisms of copper control. Impact and implications: Maintaining non-ceruloplasmin-bound copper within the normal range is an important treatment goal in WD as this "free" copper is considered toxic to the liver and brain. We found that intravenously injected non-ceruloplasmin-bound copper quickly distributed to a number of tissues, especially skeletal muscle, subcutaneous fat, and the liver, while uptake into the brain was slow. This study offers new insights into the mechanisms of copper control, which may encourage further research into potential new treatment targets. Clinical trial number: 2016-001975-59.

8.
J Clin Endocrinol Metab ; 109(1): e155-e162, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37554078

RESUMO

BACKGROUND AND AIMS: During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. MATERIALS AND METHODS: Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. RESULTS: During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. CONCLUSION: DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. CLINICAL TRIAL REGISTRATION NUMBER: NCT02077348.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cetoacidose Diabética/metabolismo , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais , Estudos Cross-Over
9.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502859

RESUMO

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

10.
Semin Nucl Med ; 53(5): 558-569, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268499

RESUMO

Cell lines are essential in biomedical research due to their adaptability and precise simulation of physiological and pathophysiological conditions. Cell culture techniques have greatly advanced our understanding of biology in various fields and are widely regarded as a reliable and durable tool. Their diverse applications make them indispensable in scientific research. Radiation-emitting compounds are commonly used in cell culture research to investigate biological processes. Radiolabeled compounds are utilized to study cell function, metabolism, molecular markers, receptor density, drug binding and kinetics, as well as to analyze the direct interaction of radiotracers with target organ cells. This allows for the examination of normal physiology and disease states. The In Vitro system simplifies the study and filters out nonspecific signals from the In Vivo environment, leading to more specific results. Moreover, cell cultures offer ethical advantages when evaluating new tracers and drugs in preclinical studies. While cell experiments cannot entirely replace animal experiments, they reduce the need for live animals in experimentation.


Assuntos
Pesquisa Biomédica , Medicina Nuclear , Animais , Técnicas de Cultura de Células , Cintilografia , Projetos de Pesquisa
11.
ACS Meas Sci Au ; 3(3): 226-235, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360033

RESUMO

Non-invasive liquid biopsy assays for blood-circulating biomarkers of cancer allow both its early diagnosis and treatment monitoring. Here, we assessed serum levels of protein HER-2/neu, overexpressed in a number of aggressive cancers, by the cellulase-linked sandwich bioassay on magnetic beads. Instead of traditional antibodies we used inexpensive reporter and capture aptamer sequences, transforming the enzyme-linked immuno-sorbent assay (ELISA) into an enzyme-linked aptamer-sorbent assay (ELASA). The reporter aptamer was conjugated to cellulase, whose digestion of nitrocellulose film electrodes resulted in the electrochemical signal change. ELASA, optimized relative aptamer lengths (dimer vs monomer and trimer), and assay steps allowed 0.1 fM detection of HER-2/neu in the 10% human serum in 1.3 h. Urokinase plasminogen activator and thrombin as well as human serum albumin did not interfere, and liquid biopsy analysis of serum HER-2/neu was similarly robust but 4 times faster and 300 times cheaper than both electrochemical and optical ELISA. Simplicity and low cost of cellulase-linked ELASA makes it a perspective diagnostic tool for fast and accurate liquid biopsy detection of HER-2/neu and of other proteins for which aptamers are available.

12.
J Vis Exp ; (194)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184248

RESUMO

Copper is an essential trace element, functioning in catalysis and signaling in biological systems. Radiolabeled copper has been used for decades in studying basic human and animal copper metabolism and copper-related disorders, such as Wilson disease (WD) and Menke's disease. A recent addition to this toolkit is 64-copper (64Cu) positron emission tomography (PET), combining the accurate anatomical imaging of modern computed tomography (CT) or magnetic resonance imaging (MRI) scanners with the biodistribution of the 64Cu PET tracer signal. This allows the in vivo tracking of copper fluxes and kinetics, thereby directly visualizing human and animal copper organ traffic and metabolism. Consequently, 64Cu PET is well-suited for evaluating clinical and preclinical treatment effects and has already demonstrated the ability to diagnose WD accurately. Furthermore, 64Cu PET/CT studies have proven valuable in other scientific areas like cancer and stroke research. The present article shows how to perform 64Cu PET/CT or PET/MR in humans. Procedures for 64Cu handling, patient preparation, and scanner setup are demonstrated here.


Assuntos
Cobre , Degeneração Hepatolenticular , Animais , Humanos , Cobre/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Cobre , Degeneração Hepatolenticular/metabolismo
13.
Semin Nucl Med ; 53(5): 570-576, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36858906

RESUMO

Today preclinical PET imaging connects laboratory research with clinical applications. Here PET clearly bridges the gap, as nearly identical imaging protocols can be applied to both animal and humans. However, some hurdles exist and researchers must be careful, partly because the animals are usually anesthetized during the scans, while human volunteers are awake. This review is based on our own experiences of some of the most important pitfalls and how to overcome them. This includes how studies should be designed, how to select the right anesthesia and monitoring. The choice of anesthesia is quite crucial, as it may have a greater influence on the results than the effect of the tested procedures. Monitoring is necessary, as the animals cannot fully maintain homeostasis during anesthesia, and reliable results are dependent on a stable physiology. Additionally, it is important to note that rodents, in particular, are prone to rapidly becoming hypothermic. Thus, the selection of an appropriate anesthetic and monitoring protocol is crucial for both obtaining accurate results and ensuring animal welfare. Prior to imaging, catheters for tracer administration and, if necessary, blood sampling should be implanted. The administration of tracers should be done in a manner that minimizes interference with the scans, and the same applies to any serial blood sampling. The limited blood volume and organ size of rodents should also be taken into consideration when planning experiments. Finally, if the animal needs to be awakened after the scan, proper care must be taken to ensure their welfare.


Assuntos
Anestesia , Animais , Humanos , Anestesia/métodos , Tomografia por Emissão de Pósitrons , Pesquisa
14.
Gastroenterology ; 165(1): 187-200.e7, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966941

RESUMO

BACKGROUND & AIMS: Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS: Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS: We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS: ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.


Assuntos
Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre , Eliminação Hepatobiliar , Fígado/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico
15.
Cancers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36765774

RESUMO

Sarcomas are rare and have a high mortality rate. Further prognostic classification, with readily available parameters, is warranted, and several studies have examined circulating biomarkers and PET parameters separately. This single-site, retrospective study aimed to examine the prognostic values of several scoring systems in combination with PET parameters. We included 148 patients with sarcoma, who were treated and scanned at Aarhus University Hospital from 1 January 2016 to 31 December 2019. The Akaike information criterion and Harrell's concordance index were used to evaluate whether the PET parameters added prognostic information to existing prognostic models using circulating biomarkers. Of the PET parameters, metabolic tumor volume (MTV) performed best, and when combined with the existing prognostic models, the prognostic value improved in all models. Backward stepwise selection was used to create a new model, SBSpib, which included albumin, lymphocytes, and one PET parameter, MTV. It has scores ranging from zero to three and increasing hazard ratios; HR = 4.83 (1.02-22.75) for group one, HR = 7.40 (1.6-33.42) for group two, and HR = 17.32 (3.45-86.93) for group three. Consequently, implementing PET parameters in prognostic models improved the prognostic value. SBSpib is a new prognostic model that includes both circulating biomarkers and PET parameters; however, validation in another sarcoma cohort is warranted.

16.
J Nucl Cardiol ; 30(4): 1458-1468, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36600173

RESUMO

BACKGROUND: Coincidental extracardiac findings with increased perfusion were reported during myocardial perfusion imaging (MPI) with various retention radiotracers. Clinical parametric O-15-H2O PET MPI yielding quantitative measures of myocardial blood flow (MBF) was recently implemented at our facility. We aim to explore whether similar extracardiac findings are observed using O-15-H2O. METHODS AND RESULTS: All patients (2963) were scanned with O-15-H2O PET MPI according to international guidelines and extracardiac findings were collected. In contrast to parametric O-15-H2O MBF images, extracardiac perfusion was assessed using summed images. Biopsy histopathology and other imaging modalities served as reference standards. Various malignant lesions with increased perfusion were detected, including lymphomas, large-celled neuroendocrine tumour, breast, and lung cancer plus metastases from colonic and renal cell carcinomas. Furthermore, inflammatory and hyperplastic benign conditions with increased perfusion were observed: rib fractures, gynecomastia, atelectasis, sarcoidosis, pneumonia, chronic lung inflammation and fibrosis, benign lung nodule, chronic diffuse lung infiltrates, pleural plaques and COVID-19 infiltrates. CONCLUSIONS: Malignant and benign extracardiac coincidental findings with increased perfusion are readily visible and frequently seen on O-15-H2O PET MPI. We recommend evaluating the summed O-15-H2O PET images in addition to the low-dose CT attenuation images.


Assuntos
COVID-19 , Imagem de Perfusão do Miocárdio , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Tomografia por Emissão de Pósitrons/métodos
17.
EJNMMI Res ; 12(1): 16, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347465

RESUMO

BACKGROUND: This study examines the clinical feasibility and impact of implementing a fully automated whole-body PET protocol with data-driven respiratory gating in patients with a broad range of oncological and non-oncological pathologies 592 FDG PET/CT patients were prospectively included. 200 patients with lesions in the torso were selected for further analysis, and ungated (UG), belt gated (BG) and data-driven gating (DDG) images were reconstructed. All images were reconstructed using the same data and without prolonged acquisition time for gated images. Images were quantitatively analysed for lesion uptake and metabolic volume, complemented by a qualitative analysis of visual lesion detection. In addition, the impact of gating on treatment response evaluation was evaluated in 23 patients with malignant lymphoma. RESULTS: Placement of the belt needed for BG was associated with problems in 27% of the BG scans, whereas no issues were reported using DDG imaging. For lesion quantification, DDG and BG images had significantly greater SUV values and smaller volumes than UG. The physicians reported notable image blurring in 44% of the UG images that was problematic for clinical evaluation in 4.5% of cases. CONCLUSION: Respiratory motion compensation using DDG is readily integrated into clinical routine and produce images with more accurate and significantly greater SUV values and smaller metabolic volumes. In our broad cohort of patients, the physicians overwhelmingly preferred gated over ungated images, with a slight preference for DDG images. However, even in patients with malignant disease in the torso, no additional diagnostic information was obtained by the gated images that could not be derived from the ungated images.

18.
Hepatology ; 75(6): 1461-1470, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773664

RESUMO

BACKGROUND AND AIMS: Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS: Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS: 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.


Assuntos
Degeneração Hepatolenticular , Degeneração Hepatolenticular/diagnóstico por imagem , Degeneração Hepatolenticular/genética , Heterozigoto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
19.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34857647

RESUMO

In Wilson disease, excessive copper accumulates in patients' livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood-brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood-brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Cobre/metabolismo , Molibdênio/farmacologia , Penicilamina/farmacologia , Animais , Transporte Biológico , Biomarcadores , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular , Quelantes/farmacologia , Cobre/efeitos adversos , Cobre/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Albumina Sérica/química , Albumina Sérica/metabolismo , Relação Estrutura-Atividade
20.
Oncotarget ; 12(19): 1956-1961, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548912

RESUMO

Prostate cancer is the second most diagnosed cancer in men. It is a slow progressing cancer, but when the disease reaches an advanced stage, treatment options are limited. Sequencing analyses of cancer samples have identified genes that can potentially drive disease progression. We implemented the CRISPR/Cas9 technology to simultaneously manipulate multiple genes in the murine prostate and thus to functionally test putative cancer driver genes in vivo. The activating protein-1 (AP-1) transcription factor is associated with many different cancer types, with the proto-oncogenes JUN and FOS being the two most intensely studied subunits. We analyzed expression of FOS and JUNB in human prostate cancer datasets and observed decreased expression in advanced stages. By applying CRISPR/Cas9 technology, the role of these two transcription factors in prostate cancer progression was functionally tested. Our data revealed that loss of either JunB or Fos in the context of Pten loss drives prostate cancer progression to invasive disease. Furthermore, loss of Fos increases Jun expression, and CRISPR inactivation of Jun in this context decreases cell proliferation. Overall, these in vivo studies reveal that JunB and Fos exhibit a tumor suppressor function by repressing invasive disease, whereas Jun is oncogenic and increases cell proliferation. This demonstrates that AP-1 factors are implicated in prostate cancer progression at different stages and display a dual function as tumor suppressor and as an oncogene in cancer progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...