Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(2): 911-923, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38466177

RESUMO

Type-IV glandular trichomes, which only occur in the juvenile developmental phase of the cultivated tomato (Solanum lycopersicum), produce acylsugars that broadly protect against arthropod herbivory. Previously, we introgressed the capacity to retain type-IV trichomes in the adult phase from the wild tomato, Solanum galapagense, into the cultivated species cv. Micro-Tom (MT). The resulting MT-Galapagos enhanced trichome (MT-Get) introgression line contained 5 loci associated with enhancing the density of type-IV trichomes in adult plants. We genetically dissected MT-Get and obtained a subline containing only the locus on Chromosome 2 (MT-Get02). This genotype displayed about half the density of type-IV trichomes compared to the wild progenitor. However, when we stacked the gain-of-function allele of WOOLLY, which encodes a homeodomain leucine zipper IV transcription factor, Get02/Wo exhibited double the number of type-IV trichomes compared to S. galapagense. This discovery corroborates previous reports positioning WOOLLY as a master regulator of trichome development. Acylsugar levels in Get02/Wo were comparable to the wild progenitor, although the composition of acylsugar types differed, especially regarding fewer types with medium-length acyl chains. Agronomical parameters of Get02/Wo, including yield, were comparable to MT. Pest resistance assays showed enhanced protection against silverleaf whitefly (Bemisia tabaci), tobacco hornworm (Manduca sexta), and the fungus Septoria lycopersici. However, resistance levels did not reach those of the wild progenitor, suggesting the specificity of acylsugar types in the pest resistance mechanism. Our findings in trichome-mediated resistance advance the development of robust, naturally resistant tomato varieties, harnessing the potential of natural genetic variation. Moreover, by manipulating only 2 loci, we achieved exceptional results for a highly complex, polygenic trait, such as herbivory resistance in tomato.


Assuntos
Solanum lycopersicum , Tricomas , Tricomas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Herbivoria , Herança Multifatorial , Manduca/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
3.
J Nutr ; 153(6): 1668-1679, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990182

RESUMO

BACKGROUND: Living in low-income countries often restricts the consumption of adequate protein and animal protein. OBJECTIVES: This study aimed to investigate the effects of feeding low-protein diets on growth and liver health using proteins recovered from animal processing. METHODS: Female Sprague-Dawley rats (aged 28 d) were randomly assigned (n = 8 rats/group) to be fed standard purified diets with 0% or 10% kcal protein that was comprised of either carp, whey, or casein. RESULTS: Rats that were fed low-protein diets showed higher growth but developed mild hepatic steatosis compared to rats that were fed a no-protein diet, regardless of the protein source. Real-time quantitative polymerase chain reactions targeting the expression of genes involved in liver lipid homeostasis were not significantly different among groups. Global RNA-sequencing technology identified 9 differentially expressed genes linked to folate-mediated 1-carbon metabolism, endoplasmic reticulum (ER) stress, and metabolic diseases. Canonical pathway analysis revealed that mechanisms differed depending on the protein source. ER stress and dysregulated energy metabolism were implicated in hepatic steatosis in carp- and whey-fed rats. In contrast, impaired liver one-carbon methylations, lipoprotein assembly, and lipid export were implicated in casein-fed rats. CONCLUSIONS: Carp sarcoplasmic protein showed comparable results to commercially available casein and whey protein. A better understanding of the molecular mechanisms in hepatic steatosis development can assist formulation of proteins recovered from food processing into a sustainable source of high-quality protein.


Assuntos
Caseínas , Fígado Gorduroso , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Dieta com Restrição de Proteínas , Fígado Gorduroso/etiologia , Proteínas do Soro do Leite , Lipídeos
4.
Plants (Basel) ; 11(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631734

RESUMO

The leaves of the wild tomato Solanumgalapagense harbor type-IV glandular trichomes (GT) that produce high levels of acylsugars (AS), conferring insect resistance. Conversely, domesticated tomatoes (S. lycopersicum) lack type-IV trichomes on the leaves of mature plants, preventing high AS production, thus rendering the plants more vulnerable to insect predation. We hypothesized that cultivated tomatoes engineered to harbor type-IV trichomes on the leaves of adult plants could be insect-resistant. We introgressed the genetic determinants controlling type-IV trichome development from S.galapagense into cv. Micro-Tom (MT) and created a line named "Galapagos-enhanced trichomes" (MT-Get). Mapping-by-sequencing revealed that five chromosomal regions of S. galapagense were present in MT-Get. Further genetic mapping showed that S. galapagense alleles in chromosomes 1, 2, and 3 were sufficient for the presence of type-IV trichomes on adult organs but at lower densities. Metabolic and gene expression analyses demonstrated that type-IV trichome density was not accompanied by the AS production and exudation in MT-Get. Although the plants produce a significant amount of acylsugars, those are still not enough to make them resistant to whiteflies. We demonstrate that type-IV glandular trichome development is insufficient for high AS accumulation. The results from our study provided additional insights into the steps necessary for breeding an insect-resistant tomato.

5.
Planta ; 254(1): 11, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160697

RESUMO

MAIN CONCLUSION: Cultivated tomatoes harboring the plastid-derived sesquiterpenes from S. habrochaites have altered type-VI trichome morphology and unveil additional genetic components necessary for piercing-sucking pest resistance. Arthropod resistance in the tomato wild relative Solanum habrochaites LA1777 is linked to specific sesquiterpene biosynthesis. The Sesquiterpene synthase 2 (SsT2) gene cluster on LA1777 chromosome 8 controls plastid-derived sesquiterpene synthesis. The main genes at SsT2 are Z-prenyltransferase (zFPS) and Santalene and Bergamotene Synthase (SBS), which produce α-santalene, ß-bergamotene, and α-bergamotene in LA1777 round-shaped type-VI glandular trichomes. Cultivated tomatoes have mushroom-shaped type-VI trichomes with much smaller glands that contain low levels of monoterpenes and cytosolic-derived sesquiterpenes, not presenting the same pest resistance as in LA1777. We successfully transferred zFPS and SBS from LA1777 to cultivated tomato (cv. Micro-Tom, MT) by a backcrossing approach. The trichomes of the MT-Sst2 introgressed line produced high levels of the plastid-derived sesquiterpenes. The type-VI trichome internal storage-cavity size increased in MT-Sst2, probably as an effect of the increased amount of sesquiterpenes, although it was not enough to mimic the round-shaped LA1777 trichomes. The presence of high amounts of plastid-derived sesquiterpenes was also not sufficient to confer resistance to various tomato piercing-sucking pests, indicating that the effect of the sesquiterpenes found in the wild S. habrochaites can be insect specific. Our results provide for a better understanding of the morphology of S. habrochaites type-VI trichomes and paves the way to obtain insect-resistant tomatoes.


Assuntos
Artrópodes , Sesquiterpenos , Solanum lycopersicum , Solanum , Animais , Solanum lycopersicum/genética , Solanum/genética , Tricomas
6.
Plant Sci ; 259: 35-47, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28483052

RESUMO

Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.


Assuntos
Solanum lycopersicum/genética , Tricomas/genética , MicroRNAs/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...