Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338857

RESUMO

Galleria mellonella is a lepidopteran whose larval stage has shown the ability to degrade polystyrene (PS), one of the most recalcitrant plastics to biodegradation. In the present study, we fed G. mellonella larvae with PS for 54 days and determined candidate enzymes for its degradation. We first confirmed the biodegradation of PS by Fourier transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) and then identified candidate enzymes in the larval gut by proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Two of these proteins have structural similarities to the styrene-degrading enzymes described so far. In addition, potential hydrolases, isomerases, dehydrogenases, and oxidases were identified that show little similarity to the bacterial enzymes that degrade styrene. However, their response to a diet based solely on polystyrene makes them interesting candidates as a potential new group of polystyrene-metabolizing enzymes in eukaryotes.


Assuntos
Mariposas , Poliestirenos , Animais , Poliestirenos/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Mariposas/microbiologia , Larva/metabolismo , Biodegradação Ambiental
2.
Microbiol Spectr ; 11(3): e0054023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191539

RESUMO

The aim of this study was to investigate the genomic features of a carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) isolate (K-2157) collected in Chile. Antibiotic susceptibility was determined using the disk diffusion and broth microdilution methods. Whole-genome sequencing (WGS) and hybrid assembly were performed, using data generated on the Illumina and Nanopore platforms. The mucoid phenotype was analyzed using both the string test and sedimentation profile. The genomic features of K-2157 (e.g., sequence type, K locus, and mobile genetic elements) were retrieved using different bioinformatic tools. Strain K-2157 exhibited resistance to carbapenems and was identified as a high-risk virulent clone belonging to capsular serotype K1 and sequence type 23 (ST23). Strikingly, K-2157 displayed a resistome composed of ß-lactam resistance genes (blaSHV-190, blaTEM-1, blaOXA-9, and blaKPC-2), the fosfomycin resistance gene fosA, and the fluoroquinolones resistance genes oqxA and oqxB. Moreover, several genes involved in siderophore biosynthesis (ybt, iro, and iuc), bacteriocins (clb), and capsule hyperproduction (plasmid-borne rmpA [prmpA] and prmpA2) were found, which is congruent with the positive string test displayed by K-2157. In addition, K-2157 harbored two plasmids: one of 113,644 bp (KPC+) and another of 230,602 bp, containing virulence genes, in addition to an integrative and conjugative element (ICE) embedded on its chromosome, revealing that the presence of these mobile genetic elements mediates the convergence between virulence and antibiotic resistance. Our report is the first genomic characterization of a hypervirulent and highly resistant K. pneumoniae isolate in Chile, which was collected during the coronavirus disease 2019 (COVID-19) pandemic. Due to their global dissemination and public health impact, genomic surveillance of the spread of convergent high-risk K1-ST23 K. pneumoniae clones should be highly prioritized. IMPORTANCE Klebsiella pneumoniae is a resistant pathogen involved primarily in hospital-acquired infections. This pathogen is characterized by its notorious resistance to last-line antibiotics, such as carbapenems. Moreover, hypervirulent K. pneumoniae (hvKp) isolates, first identified in Southeast Asia, have emerged globally and are able to cause infections in healthy people. Alarmingly, isolates displaying a convergence phenotype of carbapenem resistance and hypervirulence have been detected in several countries, representing a serious threat to public health. In this work, we analyzed the genomic characteristics of a carbapenem-resistant hvKp isolate recovered in 2022 from a patient with COVID-19 in Chile, representing the first analysis of this type in the country. Our results will provide a baseline for the study of these isolates in Chile, which will support the adoption of local measures aimed at controlling their dissemination.


Assuntos
COVID-19 , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Carbapenêmicos/farmacologia , Pandemias , Chile/epidemiologia , Infecções por Klebsiella/epidemiologia , COVID-19/epidemiologia , Plasmídeos , Antibacterianos/farmacologia , beta-Lactamases/genética
3.
J Tissue Eng Regen Med ; 15(4): 336-346, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480156

RESUMO

Histatin-1 is a salivary antimicrobial peptide involved in the maintenance of enamel and oral mucosal homeostasis. Moreover, Histatin-1 has been shown to promote re-epithelialization in soft tissues, by stimulating cell adhesion and migration in oral and dermal keratinocytes, gingival and skin fibroblasts, endothelial cells and corneal epithelial cells. The broad-spectrum activity of Histatin-1 suggests that it behaves as a universal wound healing promoter, although this is far from being clear yet. Here, we report that Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. Specifically, Histatin-1 promoted cell adhesion, spreading, and migration of SAOS-2 cells and MC3T3-E1 preosteoblasts in vitro, when placed on a fibronectin matrix. Besides, Histatin-1 induced the expression of osteogenic genes, including osteocalcin, osteopontin, and Runx2, and increased both activity and protein levels of alkaline phosphatase. Furthermore, Histatin-1 promoted mineralization in vitro, as it augmented the formation of calcium deposits in both SAOS-2 and MC3T3-E1 cells. Mechanistically, although Histatin-1 failed to activate ERK1/2, FAK, and Akt, which are signaling proteins associated with osteogenic differentiation or cell migration, it triggered nuclear relocalization of ß-catenin. Strikingly, the effects of Histatin-1 were recapitulated in cells that are nonosteogenically committed, since it promoted surface adhesion, migration, and the acquisition of osteogenic markers in primary mesenchymal cells derived from the apical papilla and dental pulp. Collectively, these observations indicate that Histatin-1 is a novel osteogenic factor that promotes bone cell differentiation, surface adhesion and migration, as crucial events required for bone tissue regeneration.


Assuntos
Diferenciação Celular , Movimento Celular , Histatinas/farmacologia , Osteogênese , Animais , Calcificação Fisiológica/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Microorganisms ; 8(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759661

RESUMO

Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.

5.
FASEB J ; 34(3): 4009-4025, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990106

RESUMO

Potentially malignant lesions, commonly referred to as dysplasia, are associated with malignant transformation by mechanisms that remain unclear. We recently reported that increased Wnt secretion promotes the nuclear accumulation of ß-catenin and expression of target genes in oral dysplasia. However, the mechanisms accounting for nuclear re-localization of ß-catenin in oral dysplasia remain unclear. In this study, we show that endosomal sequestration of the ß-catenin destruction complex allows nuclear accumulation of ß-catenin in oral dysplasia, and that these events depended on the endocytic protein Rab5. Tissue immunofluorescence analysis showed aberrant accumulation of enlarged early endosomes in oral dysplasia biopsies, when compared with healthy oral mucosa. These observations were confirmed in cell culture models, by comparing dysplastic oral keratinocytes (DOK) and non-dysplastic oral keratinocytes (OKF6). Intriguingly, DOK depicted higher levels of active Rab5, a critical regulator of early endosomes, when compared with OKF6. Increased Rab5 activity in DOK was necessary for nuclear localization of ß-catenin and Tcf/Lef-dependent transcription, as shown by expression of dominant negative and constitutively active mutants of Rab5, along with immunofluorescence, subcellular fractionation, transcription, and protease protection assays. Mechanistically, elevated Rab5 activity in DOK accounted for endosomal sequestration of components of the destruction complex, including GSK3ß, Axin, and adenomatous polyposis coli (APC), as observed in Rab5 dominant negative experiments. In agreement with these in vitro observations, tissue immunofluorescence analysis showed increased co-localization of GSK3ß, APC, and Axin, with early endosome antigen 1- and Rab5-positive early endosomes in clinical samples of oral dysplasia. Collectively, these data indicate that increased Rab5 activity and endosomal sequestration of the ß-catenin destruction complex leads to stabilization and nuclear accumulation of ß-catenin in oral dysplasia.


Assuntos
Apraxias/metabolismo , Núcleo Celular/metabolismo , beta Catenina/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular , Endossomos/metabolismo , Imunofluorescência , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...