Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676392

RESUMO

The adsorption mechanisms for model hydrocarbons, 4-nitrophenol (PNP), and naphthalene were studied in a coagulation-based process using a ferric sulfate-lime softening system. Kinetic and thermodynamic adsorption parameters for this system were obtained under variable ionic strength and temperature. An in situ method was used to investigate kinetic adsorption profiles for PNP and naphthalene, where a pseudo-first order kinetic model adequately described the process. Thermodynamic parameters for the coagulation of PNP and naphthalene reveal an endothermic and spontaneous process. River water was compared against lab water samples at optimized conditions, where the results reveal that ions in the river water decrease the removal efficiency (RE; %) for PNP (RE = 28 to 20.3%) and naphthalene (RE = 89.0 to 80.2%). An aluminum sulfate (alum) coagulant was compared against the ferric system. The removal of PNP with alum decreased from RE = 20.5% in lab water and to RE = 16.8% in river water. Naphthalene removal decreased from RE = 89.0% with ferric sulfate to RE = 83.2% with alum in lab water and from RE = 80.2% for the ferric system to RE = 75.1% for alum in river water. Optical microscopy and dynamic light scattering of isolated flocs corroborated the role of ions in river water, according to variable RE and floc size distribution.

2.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500187

RESUMO

Mucilage-based flocculants are an alternative to synthetic flocculants and their use in sustainable water treatment relates to their non-toxic and biodegradable nature. Mucilage extracted from flaxseed (FSG) and fenugreek seed (FGG) was evaluated as natural flocculants in a coagulation-flocculation (CF) process for arsenic removal, and were compared against a commercial xanthan gum (XG). Mucilage materials were characterized by spectroscopy (FT-IR, 13C NMR), point-of-zero charge (pHpzc) and thermogravimetric analysis (TGA). Box-Behnken design (BBD) with response surface methodology (RSM) was used to determine optimal conditions for arsenic removal for the CF process for three independent variables: coagulant dosage, flocculant dosage and settling time. Two anionic systems were tested: S1, roxarsone (organic arsenate 50 mg L-1) at pH 7 and S2 inorganic arsenate (inorganic arsenate 50 mg L-1) at pH 7.5. Variable arsenic removal (RE, %) was achieved: 92.0 (S1-FSG), 92.3 (S1-FGG), 92.8 (S1-XG), 77.0 (S2-FSG), 69.6 (S2-FGG) and 70.6 (S2-XG) based on the BBD optimization. An in situ kinetic method was used to investigate arsenic removal, where the pseudo-first-order model accounts for the kinetic process. The FSG and FGG materials offer a sustainable alternative for the controlled removal of arsenic in water using a facile CF treatment process with good efficiency, as compared with a commercial xanthan gum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...