Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 19(4): 1327-38, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16780533

RESUMO

To assess whether wide outcrossing (over 30 km) in the naturally fragmented Banksia ilicifolia R.Br. increases the ecological amplitude of offspring, we performed a comparative greenhouse growth study involving seedlings of three hand-pollinated progeny classes (self, local outcross, wide outcross) and a range of substrates and stress conditions. Outcrossed seedlings outperformed selfed seedlings, with the magnitude of inbreeding depression as high as 62% for seed germination and 37% for leaf area. Wide outcrossed seedlings outperformed local outcrossed seedlings, especially in non-native soils, facilitated in part by an improved capacity to overcome soil constraints through greater root carboxylate exudation. Soil type significantly affected seedling growth, and waterlogging and water deficit decreased growth, production of cluster roots, root exudation and total plant P uptake. Our results suggest that the interaction of narrow ecological amplitude and the genetic consequences of small fragmented populations may in part explain the narrow range of local endemics, but that wide outcrossing may provide opportunities for increased genetic variation, increased ecological amplitude and range expansion.


Assuntos
Ecologia , Hibridização Genética , Proteaceae/fisiologia , Fósforo/metabolismo , Folhas de Planta/metabolismo , Proteaceae/crescimento & desenvolvimento , Proteaceae/metabolismo
2.
Plant Biol (Stuttg) ; 8(2): 198-203, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16547864

RESUMO

We investigated whether carboxylate exudation by chickpea (Cicer arietinum L.) was affected by soil bulk density and if this effect was local or systemic. We hypothesised that concentrations of carboxylates would increase with distance from the root apex due to continuous and constitutive accumulation of carboxylates, and that exudate accumulation would be greater in a compacted soil than in a loose soil. Plants were grown in split-root or single cylinders containing loose (1400 kg m (-3)) or compacted (1800 kg m (-3)) soil. Rhizosphere carboxylate concentrations were measured of whole root systems as well as of sections along the root. The root diameter was greatest of plants grown in the compacted soil; however, root diameters were the same for both root halves in the split-root design, whether they grew in loose soil or in compacted soil. Similarly, carboxylate concentrations tended to be lower for the whole root system in the compacted soil, but were the same for both root halves in the split-root design, irrespective of whether the roots were in loose soil or in compacted soil. These results indicate that both root diameter and carboxylate exudation by roots in chickpea is regulated systemically via a signal from the shoot rather than by local signals in the roots. There was no accumulation of carboxylates with increasing distance from the apex, probably because microbial degradation occurred at similar rates as carboxylate exudation. Malonate, previously suggested as deterrent to microorganisms, is likely only a selective deterrent.


Assuntos
Ácidos Carboxílicos/metabolismo , Cicer/metabolismo , Raízes de Plantas/metabolismo , Solo/análise , Cicer/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...