Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 11612, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27194471

RESUMO

The precise molecular alterations driving castration-resistant prostate cancer (CRPC) are not clearly understood. Using a novel network-based integrative approach, here, we show distinct alterations in the hexosamine biosynthetic pathway (HBP) to be critical for CRPC. Expression of HBP enzyme glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is found to be significantly decreased in CRPC compared with localized prostate cancer (PCa). Genetic loss-of-function of GNPNAT1 in CRPC-like cells increases proliferation and aggressiveness, in vitro and in vivo. This is mediated by either activation of the PI3K-AKT pathway in cells expressing full-length androgen receptor (AR) or by specific protein 1 (SP1)-regulated expression of carbohydrate response element-binding protein (ChREBP) in cells containing AR-V7 variant. Strikingly, addition of the HBP metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) to CRPC-like cells significantly decreases cell proliferation, both in-vitro and in animal studies, while also demonstrates additive efficacy when combined with enzalutamide in-vitro. These observations demonstrate the therapeutic value of targeting HBP in CRPC.


Assuntos
Hexosaminas/biossíntese , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Neoplasia ; 17(6): 490-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26152357

RESUMO

Platelets have been long postulated to play a critical role in the pathogenesis of prostate cancer, although relatively little is known regarding the precise mechanisms involved. Androgen deprivation therapy (ADT) for prostate cancer eventually fails with relapse occurring in the form of castration-resistant prostate cancer (CRPC). CRPC tumors typically overexpress androgen receptor (AR), demonstrating continued dependence upon AR signaling. Platelets have been previously demonstrated to contain androgens, and we sought to explore the contribution of platelet-derived androgens in CRPC. In this study, we examined the role of platelet-derived androgens in vitro using platelets from men with CRPC, men with high-risk prostate cancer, and healthy male donors. A series of in vitro assays was performed to elucidate the impact of platelet-derived androgens on androgen-sensitive prostate tumor cells. By examining platelet-derived androgen effects on AR signaling in prostate tumor cells, we found that platelets, from men with CRPC and on ADT, strongly induce AR target genes and tumor cell proliferation. Moreover, we show a fully intact testosterone (T) biosynthetic pathway within platelets from its precursor cholesterol and demonstrate that platelets of CRPC patients with ADT resistance are able to generate T. Overall, our findings reveal an unknown capacity of platelets to synthesize T at functionally relevant levels in patients with lethal prostate cancer. Importantly, it suggests a novel paracrine mechanism of T production that may act to sustain CRPC state and potentiate therapeutic resistance.


Assuntos
Androgênios/farmacologia , Plaquetas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas
3.
Sci Signal ; 5(208): ra7, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22275220

RESUMO

Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks.


Assuntos
Parede Celular/enzimologia , Mycobacterium tuberculosis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Parede Celular/genética , Mycobacterium tuberculosis/genética , Peptidoglicano/biossíntese , Peptidoglicano/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Treonina/genética , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...