Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(7): 159, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344686

RESUMO

KEY MESSAGE: This work reports the physical mapping of an important gene affecting spike compactness located in a low-recombination region of hexaploid wheat. This work paves the way for the eventual isolation and characterization of the factor involved but also opens up possibilities to use this approach to precisely map other wheat genes located on proximal parts of wheat chromosomes that show highly reduced recombination. Mapping wheat genes, in the centromeric and pericentromeric regions (~ 2/3rd of a given chromosome), poses a formidable challenge due to highly suppressed recombination. Using an example of compact spike locus (C-locus), this study provides an approach to precisely map wheat genes in the pericentromeric and centromeric regions that house ~ 30% of wheat genes. In club-wheat, spike compactness is controlled by the dominant C-locus, but previous efforts have failed to localize it, on a particular arm of chromosome 2D. We integrated radiation hybrid (RH) and high-resolution genetic mapping to locate C-locus on the short arm of chromosome 2D. Flanking markers of the C-locus span a physical distance of 11.0 Mb (231.0-242 Mb interval) and contain only 11 high-confidence annotated genes. This work demonstrates the value of this integrated strategy in mapping dominant genes in the low-recombination regions of the wheat genome. A comparison of the mapping resolutions of the RH and genetic maps using common anchored markers indicated that the RH map provides ~ 9 times better resolution that the genetic map even with much smaller population size. This study provides a broadly applicable approach to fine map wheat genes in regions of suppressed recombination.


Assuntos
Mapeamento de Híbridos Radioativos , Triticum , Triticum/genética , Mapeamento Cromossômico , Recombinação Genética
2.
Plant Reprod ; 34(3): 207-224, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33950292

RESUMO

KEY MESSAGE: Developmental and transcriptomic analysis of Brachypodium embryogenesis and comparison with Arabidopsis identifies conserved and divergent phases of embryogenesis and reveals widespread heterochrony of developmental gene expression. Embryogenesis, transforming the zygote into the mature embryo, represents a fundamental process for all flowering plants. Current knowledge of cell specification and differentiation during plant embryogenesis is largely based on studies of the dicot model plant Arabidopsis thaliana. However, the major crops are monocots and the transcriptional programs associated with the differentiation processes during embryogenesis in this clade were largely unknown. Here, we combined analysis of cell division patterns with development of a temporal transcriptomic resource during embryogenesis of the monocot model plant Brachypodium distachyon. We found that early divisions of the Brachypodium embryo were highly regular, while later stages were marked by less stereotypic patterns. Comparative transcriptomic analysis between Brachypodium and Arabidopsis revealed that early and late embryogenesis shared a common transcriptional program, whereas mid-embryogenesis was divergent between species. Analysis of orthology groups revealed widespread heterochronic expression of potential developmental regulators between the species. Interestingly, Brachypodium genes tend to be expressed at earlier stages than Arabidopsis counterparts, which suggests that embryo patterning may occur early during Brachypodium embryogenesis. Detailed investigation of auxin-related genes shows that the capacity to synthesize, transport and respond to auxin is established early in the embryo. However, while early PIN1 polarity could be confirmed, it is unclear if an active response is mounted. This study presents a resource for studying Brachypodium and grass embryogenesis and shows that divergent angiosperms share a conserved genetic program that is marked by heterochronic gene expression.


Assuntos
Arabidopsis , Brachypodium , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transcriptoma
3.
Theor Appl Genet ; 134(7): 2303-2314, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33830295

RESUMO

KEY MESSAGE: This work reports a quick method that integrates RH mapping and genetic mapping to map the dominant Mov-1 locus to a 1.1-Mb physical interval with a small number of candidate genes. Bread wheat is an important crop for global human population. Identification of genes and alleles controlling agronomic traits is essential toward sustainably increasing crop production. The unique multi-ovary (MOV) trait in wheat holds potential for improving yields and is characterized by the formation of 2-3 grains per spikelet. The genetic basis of the multi-ovary trait is known to be monogenic and dominant in nature. Its precise mapping and functional characterization is critical to utilizing this trait in a feasible manner. Previous mapping efforts of the locus controlling multiple ovary/pistil formation in the hexaploid wheat have failed to produce a consensus for a particular chromosome. We describe a mapping strategy integrating radiation hybrid mapping and high-resolution genetic mapping to locate the chromosomal position of the Mov-1 locus in hexaploid wheat. We used RH mapping approach using a panel of 188 lines to map the Mov-1 locus in the terminal part of long arm of wheat chromosome 2D with a map resolution of 1.67 Mb/cR1500. Then using a genetic population of MOV × Synthetic wheat of F2 lines, we delineated the Mov-1 locus to a 1.1-Mb physical region with a small number of candidate genes. This demonstrates the value of this integrated strategy to mapping dominant genes in wheat.


Assuntos
Mapeamento de Híbridos Radioativos , Recombinação Genética , Triticum/genética , Alelos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Fenótipo , Poliploidia , Sementes
4.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557073

RESUMO

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Temperatura Baixa , Desidratação/metabolismo , Brotos de Planta/fisiologia , Estresse Fisiológico , Ceras/metabolismo , Aclimatação , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desidratação/genética , Cromatografia Gasosa-Espectrometria de Massas , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipídeos/química , Mutação , Desenvolvimento Vegetal , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico/genética , Ceras/química
5.
Plant Cell ; 31(12): 2888-2911, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628162

RESUMO

Modern wheat production comes from two polyploid species, Triticum aestivum and Triticum turgidum (var durum), which putatively arose from diploid ancestors Triticum urartu, Aegilops speltoides, and Aegilops tauschii How gene expression during embryogenesis and grain development in wheats has been shaped by the differing contributions of diploid genomes through hybridization, polyploidization, and breeding selection is not well understood. This study describes the global landscape of gene activities during wheat embryogenesis and grain development. Using comprehensive transcriptomic analyses of two wheat cultivars and three diploid grasses, we investigated gene expression at seven stages of embryo development, two endosperm stages, and one pericarp stage. We identified transcriptional signatures and developmental similarities and differences among the five species, revealing the evolutionary divergence of gene expression programs and the contributions of A, B, and D subgenomes to grain development in polyploid wheats. The characterization of embryonic transcriptional programming in hexaploid wheat, tetraploid wheat, and diploid grass species provides insight into the landscape of gene expression in modern wheat and its ancestral species. This study presents a framework for understanding the evolution of domesticated wheat and the selective pressures placed on grain production, with important implications for future performance and yield improvements.plantcell;31/12/2888/FX1F1fx1.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Transcriptoma/genética , Triticum/genética , Análise por Conglomerados , Diploide , Grão Comestível/genética , Endosperma/genética , Endosperma/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Poliploidia , Sementes/genética , Sementes/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Triticum/embriologia
6.
Plant Reprod ; 32(1): 93-104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30762127

RESUMO

Embryogenesis represents a critical phase in the life cycle of flowering plants. Here, we characterize transcriptome landscapes associated with key stages of embryogenesis by combining an optimized method for the isolation of developing Arabidopsis embryos with high-throughput RNA-seq. The resulting RNA-seq datasets identify distinct overlapping patterns of gene expression, as well as temporal shifts in gene activity across embryogenesis. Network analysis revealed stage-specific and multi-stage gene expression clusters and biological functions associated with key stages of embryo development. Methylation-related gene expression was associated with early- and middle-stage embryos, initiation of photosynthesis components with the late embryogenesis stage, and storage/energy-related protein activation with late and mature embryos. These results provide a comprehensive understanding of transcriptome programming in Arabidopsis embryogenesis and identify modules of gene expression corresponding to key stages of embryo development. This dataset and analysis are a unique resource to advance functional genetic analysis of embryo development in plants.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Arabidopsis/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Vegetal/genética , RNA de Plantas , Análise de Sequência de RNA , Transcriptoma
7.
PLoS Genet ; 14(3): e1007230, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29513662

RESUMO

In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC) in each ovule that produces four megaspores through meiosis, one of which survives to become the functional megaspore (FM). The FM further develops into an embryo sac. Little is known regarding the control of MMC formation to one per ovule and the selective survival of the FM. The ICK/KRPs (interactor/inhibitor of cyclin-dependent kinase (CDK)/Kip-related proteins) are plant CDK inhibitors and cell cycle regulators. Here we report that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, supernumerary MMCs, FMs and embryo sacs were formed and the two embryo sacs could be fertilized to form two embryos with separate endosperm compartments. Twin seedlings were observed in about 2% seeds. Further, in the mutant ovules the number and position of surviving megaspores from one MMC were variable, indicating that the positional signal for determining the survival of megaspore was affected. Strikingly, ICK4 fusion protein with yellow fluorescence protein was strongly present in the degenerative megaspores but absent in the FM, suggesting an important role of ICKs in the degeneration of non-functional megaspores. The absence of or much weaker phenotypes in lower orders of mutants and complementation of the septuple mutant by ICK4 or ICK7 indicate that multiple ICK/KRPs function redundantly in restricting the formation of more than one MMC and in the selective survival of FM, which are critical to ensure the development of one embryo sac and one embryo per ovule.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Óvulo Vegetal/citologia , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Mutação , Óvulo Vegetal/fisiologia , Células Vegetais/fisiologia , Plantas Geneticamente Modificadas , Recombinases Rec A/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
8.
Plant J ; 80(3): 424-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142088

RESUMO

Unlike conventional lysine (K) 48-linked polyubiquitination, K63-linked polyubiquitination plays signaling roles in yeast and animals. Thus far, UBC13 is the only known ubiquitin-conjugating enzyme (E2) specialized in K63-linked polyubiquitination. Previous identification of Arabidopsis genes encoding UBC13 as well as its interacting partner UEV1 indicates that the UBC13-mediated ubiquitination pathway is conserved in plants; however, little is known about functions and signaling mediated through K63-linked polyubiquitination in plants. To address the functions of UBC13-mediated ubiquitination in plants, we created Arabidopsis ubc13 null mutant lines in which the two UBC13 genes were disrupted. The double mutant displayed altered root development, including shorter primary root, fewer lateral roots and only a few short root hairs in comparison with the wild type and single mutant plants, indicating that UBC13 activity is critical for all major aspects of root development. The double mutant plants were insensitive to auxin treatments, suggesting that the strong root phenotypes do not simply result from a reduced level of auxin. Instead, the ubc13 mutant had a reduced auxin response, as indicated by the expression of an auxin-responsive DR5 promoter-GFP. Furthermore, both the enzymatic activity and protein level of an AXR3/IAA17-GUS reporter were greatly increased in the ubc13 mutant, whereas the induction of many auxin-responsive genes was suppressed. Collectively, these results suggest that Aux/IAA proteins accumulate in the ubc13 mutant, resulting in a reduced auxin response and defective root development. Hence, this study provides possible mechanistic links between UBC13-mediated protein ubiquitination, root development and auxin signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Lisina/metabolismo , Mutação , Fenótipo , Raízes de Plantas/genética , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
9.
GM Crops Food ; 5(2): 106-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072186

RESUMO

A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.


Assuntos
Secas , Linho/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Fisiológico/genética , Genes de Plantas , Fenótipo
10.
PLoS One ; 8(12): e83807, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376756

RESUMO

Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Fenótipo , Ativação Transcricional
11.
Plant Cell ; 24(12): 4850-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275579

RESUMO

Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Plant Cell ; 23(12): 4348-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22158464

RESUMO

The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN encodes a WD-40 protein expressed both during embryo development and postembryonically in the SAM and RAM. The two pcn alleles identified in this study are temperature sensitive, showing defective embryo development when grown at 22°C that is rescued when grown at 29°C. In pcn mutants, meristem-specific expression of WUSCHEL (WUS), CLAVATA3, and WUSCHEL-RELATED HOMEOBOX5 is not maintained; SHOOTMERISTEMLESS, BODENLOS (BDL) and MONOPTEROS (MP) are misexpressed. Several findings link PCN to auxin signaling and meristem function: ectopic expression of DR5(rev):green fluorescent protein (GFP), pBDL:BDL-GFP, and pMP:MP-ß-glucuronidase in the meristem; altered polarity and expression of pPIN1:PIN1-GFP in the apical domain of the developing embryo; and resistance to auxin in the pcn mutants. The bdl mutation rescued embryo lethality of pcn, suggesting that improper auxin response is involved in pcn defects. Furthermore, WUS, PINFORMED1, PINOID, and TOPLESS are dosage sensitive in pcn, suggesting functional interaction. Together, our results suggest that PCN functions in the auxin pathway, integrating auxin signaling in the organization and maintenance of the SAM and RAM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Meristema/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Alelos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Padronização Corporal , Polaridade Celular , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/embriologia , Meristema/metabolismo , Microscopia Eletrônica de Varredura , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura , Transdução de Sinais , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
BMC Plant Biol ; 11: 74, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21529361

RESUMO

BACKGROUND: Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. RESULTS: We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. CONCLUSIONS: We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.


Assuntos
Linho/crescimento & desenvolvimento , Linho/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Adesivos/metabolismo , Sequência de Bases , Análise por Conglomerados , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , DNA Complementar/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Flavonoides/metabolismo , Linho/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lignanas/metabolismo , Sementes/metabolismo
14.
Plant Physiol ; 156(1): 346-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21402797

RESUMO

Embryogenesis is central to the life cycle of most plant species. Despite its importance, because of the difficulty associated with embryo isolation, global gene expression programs involved in plant embryogenesis, especially the early events following fertilization, are largely unknown. To address this gap, we have developed methods to isolate whole live Arabidopsis (Arabidopsis thaliana) embryos as young as zygote and performed genome-wide profiling of gene expression. These studies revealed insights into patterns of gene expression relating to: maternal and paternal contributions to zygote development, chromosomal level clustering of temporal expression in embryogenesis, and embryo-specific functions. Functional analysis of some of the modulated transcription factor encoding genes from our data sets confirmed that they are critical for embryogenesis. Furthermore, we constructed stage-specific metabolic networks mapped with differentially regulated genes by combining the microarray data with the available Kyoto Encyclopedia of Genes and Genomes metabolic data sets. Comparative analysis of these networks revealed the network-associated structural and topological features, pathway interactions, and gene expression with reference to the metabolic activities during embryogenesis. Together, these studies have generated comprehensive gene expression data sets for embryo development in Arabidopsis and may serve as an important foundational resource for other seed plants.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Sementes/embriologia , Sementes/genética , Sementes/metabolismo
15.
Plant Physiol ; 155(3): 1367-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21266656

RESUMO

Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5' external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , RNA Ribossômico/genética , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis , Pareamento de Bases/genética , Sequência de Bases , Núcleo Celular/metabolismo , DNA Bacteriano/genética , DNA Intergênico/genética , DNA de Plantas/metabolismo , Genoma de Planta/genética , Zíper de Leucina/genética , Mutagênese Insercional/genética , Mutação/genética , Fenótipo , Fosfatidilinositol 3-Quinases , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RNA Ribossômico/metabolismo , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...