Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 56(4): 378-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25451016

RESUMO

Ozone is an important constituent of ambient air pollution and represents a major public health concern. Oxidative injury due to ozone inhalation causes the generation of reactive oxygen species and can be genotoxic. To determine whether ozone exposure causes genetic damage in peripheral blood lymphocytes, we used a well-validated cytokinesis-block micronucleus Cytome assay. Frequencies of micronuclei (MN) and nucleoplasmic bridges (NB) were used as indicators of cytogenetic damage. Samples were obtained from 22 non-smoking healthy subjects immediately before and 24-hr after controlled 4-hr exposures to filtered air, 100 ppb, and 200 ppb ozone while exercising in a repeated-measure study design. Inhalation of ozone at different exposure levels was associated with a significant dose-dependent increase in MN frequency (P < 0.0001) and in the number of cells with more than one MN per cell (P < .0005). Inhalation of ozone also caused an increase in the number of apoptotic cells (P = 0.002). Airway neutrophilia was associated with an increase in MN frequency (P = 0.033) independent of the direct effects of ozone exposure (P < 0.0001). We also observed significant increases in both MN and NB frequencies after exercise in filtered air, suggesting that physical activity is also an important inducer of oxidative stress. These results corroborate our previous findings that cytogenetic damage is associated with ozone exposure, and show that damage is dose-dependent. Further study of ozone-induced cytogenetic damage in airway epithelial cells could provide evidence for the role of oxidative injury in lung carcinogenesis, and help to address the potential public health implications of exposures to oxidant environments.


Assuntos
Linfócitos/efeitos dos fármacos , Ozônio/administração & dosagem , Ozônio/toxicidade , Administração por Inalação , Adulto , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/citologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Testes para Micronúcleos , Necrose , Neutrófilos/efeitos dos fármacos , Experimentação Humana não Terapêutica
2.
J Expo Sci Environ Epidemiol ; 22(6): 641-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22760442

RESUMO

Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican-American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community. We used Wilcoxon signed-rank tests to compare enzymatic activities among mothers and their children, and analysis of variance to identify factors associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were only statistically significant for the paraoxon substrate. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared with their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (body mass index Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age 9 years, PON1 activities approach adult levels, and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism.


Assuntos
Agricultura , Arildialquilfosfatase/metabolismo , Colinesterases/metabolismo , Americanos Mexicanos , Criança , Exposição Ambiental , Feminino , Humanos , Praguicidas/toxicidade , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...