Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9203-9211, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467140

RESUMO

Evolution has produced natural systems that generate motion and sense external stimuli at the micro- and nanoscales. At extremely small scales, the intricate motions and large deformations shown by these biosystems are due to a tipping balance between their structural compliance and the actuating force generated in them. Artificially mimicking such ingenious systems for scientific and engineering applications has been approached through the development and use of different smart materials mostly limited to microscale dimensions. To push the application range down to the nanoscale, we developed a material preparation process that yields a library of nanomagnetic elastomers with high magnetic particle concentrations. Through this process, we have realized a material with the highest magnetic-to-elastic force ratio, as is shown by an extensive mechanical and magnetic characterization of the materials. Furthermore, we have fabricated and actuated micro- and nanostructures mimicking cilia, demonstrating the extreme compliance and responsiveness of the developed materials.

2.
Lab Chip ; 22(9): 1650-1679, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35403636

RESUMO

Cilia are microscopic hair-like external cell organelles that are ubiquitously present in nature, also within the human body. They fulfill crucial biological functions: motile cilia provide transportation of fluids and cells, and immotile cilia sense shear stress and concentrations of chemical species. Inspired by nature, scientists have developed artificial cilia mimicking the functions of biological cilia, aiming at application in microfluidic devices like lab-on-chip or organ-on-chip. By actuating the artificial cilia, for example by a magnetic field, an electric field, or pneumatics, microfluidic flow can be generated and particles can be transported. Other functions that have been explored are anti-biofouling and flow sensing. We provide a critical review of the progress in artificial cilia research and development as well as an evaluation of its future potential. We cover all aspects from fabrication approaches, actuation principles, artificial cilia functions - flow generation, particle transport and flow sensing - to applications. In addition to in-depth analyses of the current state of knowledge, we provide classifications of the different approaches and quantitative comparisons of the results obtained. We conclude that artificial cilia research is very much alive, with some concepts close to industrial implementation, and other developments just starting to open novel scientific opportunities.


Assuntos
Incrustação Biológica , Cílios , Humanos , Dispositivos Lab-On-A-Chip , Campos Magnéticos , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...