Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 250: 112831, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134574

RESUMO

Cancer is a life-threatening disease when it is diagnosed at a late stage or treatment procedures fail. Inhibiting cancer cells in the tumor environment is a significant challenge for anticancer therapy. The photothermal effects of nanomaterials are being studied as a new cancer treatment. In this work, rhenium disulfide (ReS2) nanosheets were made by liquid exfoliation with gum arabic (GA) and coated with silver nanoparticles (AgNPs) to produce reactive oxygen species that destroy cancer cells. The synthesized AgNP-GA-ReS2 NPs were characterized using UV, DLS, SEM, TEM, and photothermal studies. According to the DLS findings, the NPs were about 216 nm in size and had a zeta potential of 76 mV. The TEM and SEM analyses revealed that the GA-ReS2 formed single-layered nanosheets on which the AgNPs were distributed. The photothermal effects of the AgNP-GA-ReS2 NPs at 50 µg/mL were tested with an 808 nm laser at 1.2 W cm-2, and they reached 55.8 °C after 5 min of laser irradiation. MBA-MB-231 cells were used to test the cytotoxicity of the newly designed AgNP-GA-ReS2 NPs with and without laser irradiation for 5 min. At 50 µg/mL, the AgNP-GA-ReS2 showed cytotoxicity, which was confirmed with calcein and EtBr staining. The DCFH-DA and flow cytometry analyses demonstrated that AgNP-GA-ReS2 nanosheets under NIR irradiation generated ROS with high anticancer activity, in addition to the photothermal effects.


Assuntos
Nanopartículas Metálicas , Neoplasias , Rênio , Humanos , Nanopartículas Metálicas/toxicidade , Prata/farmacologia
2.
APL Bioeng ; 7(4): 046115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058994

RESUMO

Due to the limitations of the current treatment approaches of allograft and autograft techniques, treating bone disorders is a significant challenge. To address these shortcomings, a novel biomaterial composite is required. This study presents the preparation and fabrication of a novel biomaterial composite scaffold that combines poly (D, L-lactide-co-glycolide) (PLGA), mesoporous bioactive glass (MBG), molybdenum disulfide (MoS2), and simvastatin (Sim) to address the limitations of current bone grafting techniques of autograft and allograft. The fabricated scaffold of PLGA-MBG-MoS2-Sim composites was developed using a low-cost hydraulic press and salt leaching method, and scanning electron microscopy (SEM) analysis confirmed the scaffolds have a pore size between 143 and 240 µm. The protein adsorption for fabricated scaffolds was increased at 24 h. The water adsorption and retention studies showed significant results on the PLGA-MBG-MoS2-Sim composite scaffold. The biodegradation studies of the PLGA-MBG-MoS2-Sim composite scaffold have shown 54% after 28 days. In vitro, bioactivity evaluation utilizing simulated body fluid studies confirmed the development of bone mineral hydroxyapatite on the scaffolds, which was characterized using x-ray diffraction, Fourier transform infrared, and SEM analysis. Furthermore, the PLGA-MBG-MoS2-Sim composite scaffold is biocompatible with C3H10T1/2 cells and expresses more alkaline phosphatase and mineralization activity. Additionally, in vivo research showed that PLGA-MBG-MoS2-Sim stimulates a higher rate of bone regeneration. These findings highlight the fabricated PLGA-MBG-MoS2-Sim composite scaffold presents a promising solution for the limitations of current bone grafting techniques.

3.
Heliyon ; 9(12): e22843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144272

RESUMO

Introduction: Withania somnifera (WS) or ashwagandha is an adaptogenic plant used extensively in traditional medicines and as a food supplement. Despite a long history of use and numerous clinical trials, the human pharmacokinetics of withanolides, the active phytochemicals in WS extracts, have not been fully evaluated. This study evaluated the oral pharmacokinetics and bioequivalence of active withanolides in human plasma after administration of a single dose of two commercial ashwagandha extracts containing equal amounts of total withanolides. Methods: This randomized, double-blind, single-dose crossover study of 16 healthy human volunteers evaluated the acute oral bioavailability of withanolides and the bioequivalence of two WS extracts, WS-35 and WS-2.5. WS-35 was standardized to total withanolides not less than 40% comprising not less than 35% withanolide glycosides and WS-2.5 was standardized to 2.5% withanolides. The clinical dosages were normalized to 185 mg of total withanolide in each extract at the bioequivalent dosages. The pharmacokinetic parameters of withanolide A, withanoside IV, withaferin A, and total withanolides were quantified in the blood plasma using a validated LC-MS/MS method. Results: The half-life, C-max, and mean residence time of the total withanolides were 5.18, 5.62 and 4.13 times significantly higher and had lower systemic clearance with WS-35 than with WS-2.5 extract. Considering the plasma AUC 0-inf of total withanolides per mg of each WS extract administered orally, WS-35 was 280.74 times more bioavailable than WS-2.5. Conclusion: The results of this study highlight the importance of withanolide glycosides in improving the pharmacokinetics of WS extracts. Owing to its superior pharmacokinetic profile, WS-35, with 35% withanolide glycosides, is a promising candidate for further studies on Withania somnifera. Clinical trial registration: CTRI/2020/10/028397 [registered on:13/10/2020] (Trial prospectively registered) http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=42149&EncHid=&userName=CTRI/2020/10/028397.

4.
Int J Biol Macromol ; 244: 124982, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37244326

RESUMO

Transition metal dichalcogenides (TMDs) have gained considerable attention for a broad range of applications, including cancer therapy. Production of TMD nanosheets using liquid exfoliation provides an inexpensive and facile route to achieve high yields. In this study, we developed TMD nanosheets using gum arabic as an exfoliating and stabilizing agent. Different types of TMDs, including MoS2, WS2, MoSe2, and WSe2 nanosheets, were produced using gum arabic and were characterized physicochemically. The developed gum arabic TMD nanosheets exhibited a remarkable photothermal absorption capacity in the near-infrared (NIR) region (808 nm and 1 W⋅cm-2). The drug doxorubicin was loaded on the gum arabic-MoSe2 nanosheets (Dox-G-MoSe2), and the anticancer activity was evaluated using MDA-MB-231 cells and a water-soluble tetrazolium salt (WST-1) assay, live and dead cell assays, and flow cytometry. Dox-G-MoSe2 significantly inhibited MDA-MB-231 cancer cell proliferation under the illumination of an NIR laser at 808 nm. These results indicate that Dox-G-MoSe2 is a potentially valuable biomaterial for breast cancer therapy.


Assuntos
Neoplasias da Mama , Compostos Organosselênicos , Humanos , Feminino , Goma Arábica , Molibdênio/química , Morfolinas , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/química
5.
Nat Prod Res ; 37(22): 3873-3877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513058

RESUMO

Glioblastoma is the most common lethal form of malignant tumor that arises from the central nervous system. The present-day therapeutic strategies possess their own pros and cons. Hence, there is a need to look back into the traditional medicines that could be potential agents to treat glioblastoma. One of the potential approaches in anticancer therapy is to induce tumor cell death by natural phytochemicals which pose minimum adverse effects. In this study, we aimed to evaluate the cytotoxic and apoptotic effects of hexane extract of Alkanna tinctoria (L.) Tausch on U87MG cells using various biological activities. The results obtained from our study state that the plant extract showed potential anticancer activity against U87MG cells. The molecular docking studies indicated that alkannin and shikonin present in the extract could efficiently bind to brain tumor cell receptors and showed better docking scores when compared to commercially available drugs temozolomide and bevacizumab.

6.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432279

RESUMO

Dental caries is a common problem in adolescents, leading to permanent loss of teeth or cavitation. Caries is a continuous process wherein demineralization and remineralization occur regularly. Hydroxyapatite (HA) is one of the most biocompatible and bioactive materials, as it closely resembles the mineral composition of teeth. The present study deals with isolating hydroxyapatite from fish bone (Epinephelus chlorostigma) by alkaline hydrolysis and thermal calcination. The isolated nano HA was characterized using FT-IR, XRD, TGA, FE-SEM-EDX, and HR-TEM analysis. The nano HA isolated by alkaline hydrolysis is nontoxic, and the cells are viable. The isolated HA enhances the proliferation of L929 cells. The remineralization potential of the extracted nano HA was evaluated in healthy premolars by DIAGNOdent/laser fluorescence quantification, surface microhardness test, and SEM-EDX analysis. Surface morphological observations in SEM and EDX analyses show that thermally calcined HA and alkali-treated HA can induce mineralization and deposit minerals. Therefore, HA obtained from Epinephelus chlorostigma could be a potential biomaterial for treating early caries.

7.
Beilstein J Nanotechnol ; 13: 1051-1067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247529

RESUMO

Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.

8.
Mar Drugs ; 20(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286414

RESUMO

Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.


Assuntos
Substitutos Ósseos , Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Osteogênese , Alicerces Teciduais/química , Regeneração Óssea , Fosfatase Alcalina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cálcio , Preparações de Ação Retardada , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Durapatita/farmacologia , Durapatita/química , Alginatos/farmacologia , Alginatos/química , Óxidos/química , Proliferação de Células
9.
ACS Omega ; 7(30): 26092-26106, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936459

RESUMO

Defects and disorders of the bone due to disease, trauma, or abnormalities substantially affect a person's life quality. Research in bone tissue engineering is motivated to address these clinical needs. The present study demonstrates casein-mediated liquid exfoliation of molybdenum disulfide (MoS2) and its coupling with alginate to create microspheres to engineer bone graft substitutes. Casein-exfoliated nano-MoS2 was chemically characterized using different analytical techniques. The UV-visible spectrum of nano-MoS2-2 displayed strong absorption peaks at 610 and 668 nm. In addition, the XPS spectra confirmed the presence of the molybdenum (Mo, 3d), sulfur (S, 2p), carbon (C, 1s), oxygen (O, 1s), and nitrogen (N, 1s) elements. The exfoliated MoS2 nanosheets were biocompatible with the MG-63, MC3T3-E1, and C2C12 cells at 250 µg/mL concentration. Further, microspheres were created using alginate, and they were characterized physiochemically and biologically. Stereomicroscopic images showed that the microspheres were spherical with an average diameter of 1 ± 0.2 mm. The dispersion of MoS2 in the alginate matrix was uniform. The alginate-MoS2 microspheres promoted apatite formation in the SBF (simulated body fluid) solution. Moreover, the alginate-MoS2 was biocompatible with MG-63 cells and promoted cell proliferation. Higher alkaline phosphatase activity and mineralization were observed on the alginate-MoS2 with the MG-63 cells. Hence, the developed alginate-MoS2 microsphere could be a potential candidate for a bone graft substitute.

10.
Int J Biol Macromol ; 217: 652-667, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35841962

RESUMO

Nanoparticle-based therapy has gained much attention in the pharmaceutical industry. Fucoidan is a sulfated polysaccharide naturally derived from marine brown algae and is widely used for medical applications. We explore preparation of fucoidan-based nanoparticles and their biomedical applications in the current review. The fucoidan-based nanoparticles have been synthesized using microwave, emulsion, solvent evaporation, green synthesis, polyelectrolyte self-assembly, precipitation, and ultrasonication methods. The synthesized nanoparticles have particle sizes ranging from 100 to 400 nm. Therefore, fucoidan-based nanoparticles have a variety of potential therapeutic applications, including drug delivery, cancer therapies, tissue engineering, antimicrobial applications, magnetic resonance imaging contrast, and atherothrombosis imaging. For example, fucoidan nanoparticles have been used to deliver curcumin, dextran, gentamicin, epigallocatechin gallate, and cisplatin for cancer therapies. Furthermore, fucoidan nanoparticles coupled with metal nanoparticles have been used to target and recognize clinical conditions for diagnostic purposes. Hence, fucoidan-based nanoparticles have been helpful for biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Polissacarídeos/uso terapêutico
11.
Drug Deliv Transl Res ; 12(11): 2838-2855, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35445942

RESUMO

Diabetic wound management is a serious health care challenge due to higher rates of relapse, expensive treatment approaches, and poor healing outcomes. Among cell-based therapies, use of platelet-rich plasma (PRP) has been shown to be effective for diabetic wounds, but its poor shelf-life limits its clinical use. Here, we demonstrate a simple but effective polymer system to increase the shelf-life of PRP by developing a polyelectrolyte complex with dropwise addition of chitosan solution containing PRP by simple mixing at room temperature. Thus, prepared chitosan-fucoidan (CF) carrier complex encapsulated more than 95% of the loaded PRP. The resulting CF/PRP colloids were spherical in shape and ensured extended PRP release up to 72 h at 37 °C. Routine characterization (FT-IR, XRD, SEM) showed the material properties. The biological assays showed that CF complexes were biocompatible while CF/PRP enhanced the proliferation of fibroblasts and keratinocytes via higher Ki67 expression and fibroblast migration. Further investigations using a diabetic mouse model demonstrated significantly higher wound contraction and histopathological observations showed increased fibroblast migration, and collagen and cytokeratin deposition in treatment groups. The results are suggestive of the efficacy of CF/PRP as a cost-effective topical formulation for the sustained delivery of growth factors in treating chronic diabetic wounds.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Plasma Rico em Plaquetas , Animais , Proliferação de Células , Colágeno/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinas/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Plasma Rico em Plaquetas/metabolismo , Polieletrólitos , Polissacarídeos , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização
12.
J Biomater Sci Polym Ed ; 31(16): 2025-2043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32648515

RESUMO

Scaffolding system plays an important role in the development of artificial bone for treatment of defective or diseased bone tissue. In the present work, we have developed microspheres (COS-Ag-Alg-HA) containing chitooligosaccharide (COS) coated silver nanoparticles (Ag NPs) with alginate (Alg) and hydroxyapatite (HA) as bone graft substitutes. The developed microspheres were characterized through various analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, field emission scanning electron microscopy with EDX and evaluated the mechanical strength by using universal testing machine. In addition to this, antimicrobial activity and biocompatibility of the developed microspheres were evaluated with pathogenic microbes and osteoblast-like cells, respectively. Results suggest that microspheres are rigid, and strong chemical interactions were observed between the materials. The size of the microspheres was ranging from 1.5 ± 0.5 to 4.0 ± 0.5 mm. Significant microbial inhibition was observed against Staphylococcus aureus, and the developed microspheres are biocompatible with osteoblast-like cells. Based on the aforementioned finding results, the developed microsphere is proposed to be a potential candidate for bone tissue repair and regeneration.


Assuntos
Durapatita , Nanopartículas Metálicas , Alginatos , Antibacterianos/farmacologia , Microesferas , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Int J Biol Macromol ; 163: 745-755, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32599248

RESUMO

Silver nanoparticles (AgNPs) have gained attention due to their exceptional physicochemical properties and biological activities, owing to which they are extensively used in biomedical field. We synthesized AgNPs by rapid microwave-assisted method using fucoidan as a reducing agent. The synthesized fucoidan-AgNPs (F-AgNPs) were characterized for the structural and functional properties. The bactericidal effect and mode of action of F-AgNPs on the pathogenic bacteria and biofilm formation were investigated along with the cytotoxicity studies. The UV-Visible spectra of the F-AgNPs showed the surface resonance peak at 419 nm. The nanoparticles were spherical in shape with particle size of 59.5 ± 1.46 nm and polydispersity index (PDI) of 0.3 ± 0.01. Capping of fucoidan on AgNPs was confirmed by FTIR with characteristic peaks of sulfate group. Silver content of F-AgNPs was 87% with 13% contribution from the fucoidan moieties. The F-AgNPs showed antimicrobial activity against common pathogenic bacteria and was able to inhibit biofilm formation in Pseudomonas aeruginosa at 20 µg/mL concentration. The oxidative stress and intracellular protein leakage were observed due to the F-AgNP interaction with the cell bringing about bactericidal effect. The results highlight the synthesis and bioactivity of AgNPs doped with organic moieties for applications as antimicrobials.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Nanopartículas Metálicas/química , Micro-Ondas , Polissacarídeos/química , Prata/química , Técnicas de Química Sintética , Química Verde , Estresse Oxidativo , Tamanho da Partícula , Espécies Reativas de Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Curr Pharm Des ; 25(11): 1200-1209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31465280

RESUMO

BACKGROUND: Utilization of macroalgae has gained much attention in the field of pharmaceuticals, nutraceuticals, food and bioenergy. Macroalgae has been widely consumed in Asian countries as food from ancient days and proved that it has potential bioactive compounds which are responsible for its nutritional properties. Macroalgae consists of a diverse range of bioactive compounds including proteins, lipids, pigments, polysaccharides, etc. Polysaccharides from macroalgae have been utilized in food industries as gelling agents and drug excipients in the pharmaceutical industries owing to their biocompatibility and gel forming properties. Exploration of macroalgae derived sulfated polysaccharides in biomedical applications is increasing recently. METHODS: In the current review, we have provided information of three different sulfated polysaccharides such as carrageenan, fucoidan and ulvan and their isolation procedure (enzymatic precipitation, microwave assisted method, and enzymatic hydrolysis method), structural details, and their biomedical applications exclusively for bone tissue repair and regeneration. RESULTS: From the scientific results on sulfated polysaccharides from macroalgae, we conclude that sulfated polysaccharides have exceptional properties in terms of hydrogel-forming ability, scaffold formation, and mimicking the extracellular matrix, increasing alkaline phosphatase activity, enhancement of biomineralization ability and stem cell differentiation for bone tissue regeneration. CONCLUSION: Overall, sulfated polysaccharides from macroalgae may be promising biomaterials in bone tissue repair and regeneration.


Assuntos
Regeneração Óssea , Polissacarídeos/farmacologia , Alga Marinha/química , Sulfatos/química , Ásia , Osso e Ossos , Carragenina
15.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262038

RESUMO

Pro-oxidant therapy exploiting pro-oxidant drugs that can trigger cytotoxic oxidative stress in cancer cells has emerged as an innovative strategy for cancer-specific therapy. Piperlongumine (PL) has gained great interest as a novel pro-oxidant agent, because it has an ability to trigger cancer-specific apoptosis through the increase of oxidative stress in cancer cells. However, the use of PL is limited in the clinic because of its hydrophobic nature. In this study, chitosan- and fucoidan-based nanoparticles were prepared for the effective intracellular delivery of PL into cancer cells. Chitosan and fucoidan formed nanoparticles by ionic gelation. The chitosan- and fucoidan-based nanoparticles (CS-F NPs) effectively encapsulated PL, and increased its water solubility and bioavailability. CS-F NPs showed very low cytotoxicity in human prostate cancer cells, demonstrating its high potential for in vivo applications. The PL-loaded chitosan-fucoidan nanoparticles (PL-CS-F NPs) efficiently killed human prostate cancer cells via PL-induced intracellular reactive oxygen species (ROS) generation. This study demonstrates that CS-F NPs are promising natural polymer-based drug carriers for safe and effective PL delivery.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/análogos & derivados , Dioxolanos/administração & dosagem , Nanopartículas/química , Oxidantes/administração & dosagem , Polissacarídeos/química , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Dioxolanos/farmacologia , Humanos , Nanopartículas/efeitos adversos , Oxidantes/farmacologia
16.
Molecules ; 23(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895803

RESUMO

Silver nanoparticles (AgNPs) are gaining a great deal of attention in biomedical applications due to their unique physicochemical properties. In this study, green synthesis of AgNPs was developed using seaweed polysaccharide fucoidan. The AgNPs were further coated with chitosan to form an electrolyte complex on the surface. The developed chitosan⁻fucoidan complex-coated AgNPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). FT-IR results suggested strong polyelectrolyte complexation between fucoidan and chitosan. The developed chitosan⁻fucoidan complex-coated AgNPs significantly inhibited microbial growth. Moreover, the AgNPs showed efficient anticancer activity in human cervical cancer cells (HeLa). This study demonstrated that chitosan⁻fucoidan complex-coated AgNPs hold high potential for food and cosmeceutical applications.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Quitosana/química , Polissacarídeos/química , Prata/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Verde , Células HeLa , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Prata/farmacologia , Propriedades de Superfície
18.
Int J Biol Macromol ; 104(Pt B): 1483-1494, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28472685

RESUMO

The feasibility of adsorption and desorption behavior of nanochitosan(NCS)/sodium alginate(SA)/microcrystalline cellulose (MC) bead prepared in 2:8:1 ratio for Pb(II) removal has been investigated through batch studies. The proof of adsorption of Pb(II) ions onto NCS/SA/MC beads was identified from FT-IR and EDX-SEM Studies. Studies of the effect of pH, adsorbent dose, metal ion concentration and temperature reveals that the optimum conditions for adsorption was found to be pH:6; adsorbent dose:4g; initial metal concentration: 62.5mg/L and temperature:50°C. Various equilibrium adsorption isotherm models namely Langmuir, Freundlich, Temkin and D-R applied for the analysis of isotherm data indicate that the Freundlich adsorption isotherm model was found to be followed. On the basis of kinetic studies, specific rate constants involved in the processes were calculated and the observed result shows that the pseudo second order kinetics was found to be a better fit. The desorption studies reveals that the recovery of Pb(II) from NCS/SA/MC bead was found to be effective by using 0.1M HCl solution. From the results it was evident that the NCS/SA/MC bead showed better Pb(II) uptake performance and regeneration for further use and hence it was found to be an efficient biosorbent for treating industrial effluent.


Assuntos
Alginatos/química , Celulose/química , Quitosana/química , Chumbo/química , Chumbo/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Cinética , Microesferas , Nanoestruturas , Tamanho da Partícula , Soluções , Temperatura , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
19.
Mar Drugs ; 15(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524092

RESUMO

Marine fish provide a rich source of bioactive compounds such as proteins and peptides. The bioactive proteins and peptides derived from marine fish have gained enormous interest in nutraceutical, pharmaceutical, and cosmeceutical industries due to their broad spectrum of bioactivities, including antioxidant, antimicrobial, and anti-aging activities. Recently, the development of cosmeceuticals using marine fish-derived proteins and peptides obtained from chemical or enzymatical hydrolysis of fish processing by-products has increased rapidly owing to their activities in antioxidation and tissue regeneration. Marine fish-derived collagen has been utilized for the development of cosmeceutical products due to its abilities in skin repair and tissue regeneration. Marine fish-derived peptides have also been utilized for various cosmeceutical applications due to their antioxidant, antimicrobial, and matrix metalloproteinase inhibitory activities. In addition, marine fish-derived proteins and hydrolysates demonstrated efficient anti-photoaging activity. The present review highlights and presents an overview of the current status of the isolation and applications of marine fish-derived proteins and peptides. This review also demonstrates that marine fish-derived proteins and peptides have high potential for biocompatible and effective cosmeceuticals.


Assuntos
Organismos Aquáticos , Cosmecêuticos/química , Proteínas de Peixes/química , Peptídeos/química , Animais , Cosmecêuticos/farmacologia , Proteínas de Peixes/farmacologia , Peptídeos/farmacologia
20.
Int J Biol Macromol ; 102: 642-650, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28435058

RESUMO

The objective of present investigation was to develop gastro-retentive controlled release system of carvedilol using biological macromolecule, chitosan. 32 full factorial design was adopted for optimization of tripolyphosphate (X1) and curing time (X2). Bead stability in 0.1N HCl, buoyancy duration, density, drug loading, dissolution efficiency and cumulative percentage release at 8th hour were evaluated as dependent variables. The levels of X1 and X2 of optimized formulation having maximum desirability was found to 2.0% w/v and 62.66min, respectively. The in silico predicted responses and observed response were found to be in good agreement (percent bias error: -13.295 to +13.269). SEM images showed numerous pores in the cross sectional image that renders buoyancy. AUC0-∞ of optimized formulation was 1.47 times higher as compared to suspension corroborating enhanced extent of absorption. Tmax and mean residence time were significantly higher from optimized formulation vis a vis suspension. In silico study indicated maximum regional absorption from the duodenum (94.1%) followed by jejunum (5.6%). Wagner-Nelson and Loo-Reigelman method were the preferred deconvolution approach over numerical deconvolution to establish IVIVC. In conclusion, the study showed that gastro-retentive controlled release system prepared using chitosan could be a potential drug carrier of carvedilol with improved bioavailability.


Assuntos
Carbazóis/química , Carbazóis/metabolismo , Quitosana/química , Portadores de Fármacos/química , Mucosa Gástrica/metabolismo , Microesferas , Propanolaminas/química , Propanolaminas/metabolismo , Disponibilidade Biológica , Carbazóis/farmacocinética , Carvedilol , Propanolaminas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...