Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8050, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577856

RESUMO

Metastatic prostate cancer colonizes the bone to pave the way for bone metastasis, leading to skeletal complications associated with poor prognosis and morbidity. This study demonstrates the feasibility of Raman imaging to differentiate between cancer cells at different stages of tumorigenesis using a nanoclay-based three-dimensional (3D) bone mimetic in vitro model that mimics prostate cancer bone metastasis. A comprehensive study comparing the classification of as received prostate cancer cells in a two-dimensional (2D) model and cancer cells in a 3D bone mimetic environment was performed over various time intervals using principal component analysis (PCA). Our results showed distinctive spectral differences in Raman imaging between prostate cancer cells and the cells cultured in 3D bone mimetic scaffolds, particularly at 1002, 1261, 1444, and 1654 cm-1, which primarily contain proteins and lipids signals. Raman maps capture sub-cellular responses with the progression of tumor cells into metastasis. Raman feature extraction via cluster analysis allows for the identification of specific cellular constituents in the images. For the first time, this work demonstrates a promising potential of Raman imaging, PCA, and cluster analysis to discriminate between cancer cells at different stages of metastatic tumorigenesis.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Masculino , Neoplasias da Próstata/patologia
2.
ACS Appl Mater Interfaces ; 11(34): 30728-30734, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31335110

RESUMO

Recently, halide perovskites have upstaged decades of solar cell development by reaching power conversion efficiencies that surpass the performance of polycrystalline silicon. The efficiency improvement in the perovskite cells is related to repeated recycling between photons and electron-hole pairs, reduced recombination losses, and increased carrier lifetimes. Here, we demonstrate a novel approach toward augmenting the perovskite solar cell efficiency by invoking the Förster Resonance Energy Transfer (FRET) mechanism. FRET occurs in the near-field region as the bacteriorhodopsin (bR) protein, and perovskite has similar optical gaps. Titanium dioxide functionalized with the bR protein is shown to accelerate the electron injection from excitons produced in the perovskite layer. FRET predicts the strength of long-range excitonic transport between the perovskite and bR layers. Solar cells incorporating TiO2/bR layers are found to exhibit much higher photovoltaic performance as compared to baseline cells without bR. These results open the opportunity to develop a new class of bioperovskite solar cells with improved performance and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...