Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646644

RESUMO

PDK1, an attractive cancer target that downstreams 23 other kinases towards cell growth, survival and metabolism has gaining attention due to allosteric effect of ligands bound to it. Generally, the drug design strategy using pharmacophores is either a single protein structure or ensemble or ligand-based. Apart from these methods, yet another new approach of protein-protein docking with state of art computational tool like Schrodinger Suite to generate pharmacophores based on the interacting partners of the protein is proposed in this work. The structure-based pharmacophoric features were picked up from docking the ten interacting partners of PDK1 and screened against the Enamine libraries containing protein-protein interacting compound collection, advanced, protein mimetic and allosteric compounds. High throughput virtual screening against the PIF pocket of PDK1 yields an indole scaffold. The identified indole derivative is proposed to be a strong activator that binds in the protein-protein interaction site of PDK1 which was further confirmed by molecular metadynamics simulations, free energy surface analysis and MM-GBSA calculations. Thus, the pharmacophores generated by the interacting proteins for PPI can facilitate the virtual screening in structure-based drug discovery of similar therapeutic targets.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 40(18): 8394-8404, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896411

RESUMO

The interaction between antihistaminic drug oxatomide (OXT) and calf-thymus DNA (CT-DNA) has been investigated in a physiological buffer (pH 7.4) using UV-Vis, fluorescence, 1H NMR and circular dichroism spectral techniques coupled with viscosity measurements, KI quenching, voltammetry and in silico molecular modeling studies. OXT binds with CT-DNA in a concentration-dependent manner. At a lower [Drug]/[CT-DNA] molar ratio (0.6-0.1), OXT intercalates into the base pairs of CT-DNA, while at a higher [Drug]/[CT-DNA] molar ratio (13-6), the drug binds in the minor grooves of CT-DNA. The binding constants for the interaction are found to be in the order of 103-105 M-1, and the groove binding mode of interaction exhibits a slightly higher binding constant than that of intercalative mode. Thermodynamic analysis of binding constants at three different temperatures suggests that both these modes of binding are mainly driven by hydrophobic interactions (ΔHo > 0 and ΔSo > 0). Voltammetric investigations indicate that the electro-reduction of OXT is an adsorption controlled process and shifts in reduction peak potentials reiterate the concentration-dependent mode of binding of the drug with CT-DNA. The free energy landscape obtained at the all-atom level, using metadynamics simulation studies, revealed two major binding forces: partial intercalation and minor groove binding, which corroborate well with the experimental results.Communicated by Ramaswamy H. Sarma.


Assuntos
DNA , Dicroísmo Circular , DNA/química , Simulação de Acoplamento Molecular , Piperazinas , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...