Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 21(3): 277-289, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36637027

RESUMO

The nitrogen isotopic composition of organic matter is controlled by metabolic activity and redox speciation and has therefore largely been used to uncover the early evolution of life and ocean oxygenation. Specifically, positive δ15 N values found in well-preserved sedimentary rocks are often interpreted as reflecting the stability of a nitrate pool sustained by water column partial oxygenation. This study adds much-needed data to the sparse Paleoarchean record, providing carbon and nitrogen concentrations and isotopic compositions for more than fifty samples from the 3.4 Ga Buck Reef Chert sedimentary deposit (BRC, Barberton Greenstone Belt). In the overall anoxic and ferruginous conditions of the BRC depositional environment, these samples yield positive δ15 N values up to +6.1‰. We argue that without a stable pool of nitrates, these values are best explained by non-quantitative oxidation of ammonium via the Feammox pathway, a metabolic co-cycling between iron and nitrogen through the oxidation of ammonium in the presence of iron oxides. Our data contribute to the understanding of how the nitrogen cycle operated under reducing, anoxic, and ferruginous conditions, which are relevant to most of the Archean. Most importantly, they invite to carefully consider the meaning of positive δ15 N signatures in Archean sediments.


Assuntos
Compostos de Amônio , Ferro , Ferro/metabolismo , Sedimentos Geológicos , Anaerobiose , Nitratos , Nitrogênio , Oceanos e Mares
2.
Nature ; 608(7923): 523-527, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978129

RESUMO

The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean1-3. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2)4,5. Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. We further identify the presence of state transitions in the global ocean circulation, which lead to extensive deep-ocean anoxia developing in the early Phanerozoic even under modern pO2. Our finding that ocean oxygenation oscillates over stable thousand-year (kyr) periods also provides a causal mechanism that might explain elevated rates of metazoan radiation and extinction during the early Palaeozoic Era6. The absence, in our modelling, of any simple correlation between global climate and ocean ventilation, and the occurrence of profound variations in ocean oxygenation independent of atmospheric pO2, presents a challenge to the interpretation of marine redox proxies, but also points to a hitherto unrecognized role for continental configuration in the evolution of the biosphere.


Assuntos
Oceanos e Mares , Oxigênio , Animais , Evolução Biológica , Biota , Planeta Terra , Extinção Biológica , História Antiga , Oxigênio/análise , Oxigênio/metabolismo , Fatores de Tempo , Movimentos da Água
3.
Sci Rep ; 11(1): 19657, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608207

RESUMO

The mass extinction characterizing the Permian/Triassic boundary (PTB; ~ 252 Ma) corresponds to a major faunal shift between the Palaeozoic and the Modern evolutionary fauna. The temporal, spatial, environmental, and ecological dynamics of the associated biotic recovery remain highly debated, partly due to the scarce, or poorly-known, Early Triassic fossil record. Recently, an exceptionally complex ecosystem dated from immediately after the Smithian/Spathian boundary (~ 3 myr after the PTB) was reported: the Paris Biota (Idaho, USA). However, the spatiotemporal representativeness of this unique assemblage remained questionable as it was hitherto only reported from a single site. Here we describe three new exceptionally diverse assemblages of the same age as the Paris Biota, and a fourth younger one. They are located in Idaho and Nevada, and are taxonomic subsets of the Paris Biota. We show that the latter covered a region-wide area and persisted at least partially throughout the Spathian. The presence of a well-established marine fauna such as the Paris Biota, as soon as the early Spathian, indicates that the post-PTB biotic recovery and the installation of complex ecosystems probably took place earlier than often assumed, at least at a regional scale.

4.
Sci Adv ; 3(2): e1602159, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246643

RESUMO

In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Ecossistema , Fósseis , Filogenia , Animais
5.
Sci Rep ; 6: 31495, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27527125

RESUMO

Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.


Assuntos
Fenômenos Químicos , Cianobactérias/metabolismo , Sedimentos Geológicos/microbiologia , Compostos Inorgânicos/metabolismo , Lagos/microbiologia , Minerais/metabolismo , Compostos Orgânicos/metabolismo , Cianobactérias/química , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...