Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2368: 81-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647250

RESUMO

Despite mechanical stimulation having profound effects on plant growth and development and modulating responses to many other stimuli, including to gravity, much of the molecular machinery triggering plant mechanical responses remains unknown. This gap in our knowledge arises in part from difficulties in applying reproducible, long-term touch stimulation to plants. We describe the design and implementation of the Automated Botanical Contact Device (ABCD) that applies intermittent, controlled, and highly reproducible mechanical stimulation by drawing a plastic sheet across experimental plants. The device uses a computer numerical control platform and continuously monitors plant growth and development using automated computer vision and image analysis. The system is designed around an open-source architecture to help promote the generation of comparable datasets between laboratories. The ABCD also offers a scalable system that could be deployed in the controlled environment setting, such as a greenhouse, to manipulate plant growth and development through controlled, repetitive mechanostimulation.


Assuntos
Plantas , Tato , Gravitação , Desenvolvimento Vegetal
2.
Proc Natl Acad Sci U S A ; 117(31): 18849-18857, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690691

RESUMO

One of the major events of early plant immune responses is a rapid influx of Ca2+ into the cytosol following pathogen recognition. Indeed, changes in cytosolic Ca2+ are recognized as ubiquitous elements of cellular signaling networks and are thought to encode stimulus-specific information in their duration, amplitude, and frequency. Despite the wealth of observations showing that the bacterial elicitor peptide flg22 triggers Ca2+ transients, there remain limited data defining the molecular identities of Ca2+ transporters involved in shaping the cellular Ca2+ dynamics during the triggering of the defense response network. However, the autoinhibited Ca2+-ATPase (ACA) pumps that act to expel Ca2+ from the cytosol have been linked to these events, with knockouts in the vacuolar members of this family showing hypersensitive lesion-mimic phenotypes. We have therefore explored how the two tonoplast-localized pumps, ACA4 and ACA11, impact flg22-dependent Ca2+ signaling and related defense responses. The double-knockout aca4/11 exhibited increased basal Ca2+ levels and Ca2+ signals of higher amplitude than wild-type plants. Both the aberrant Ca2+ dynamics and associated defense-related phenotypes could be suppressed by growing the aca4/11 seedlings at elevated temperatures. Relocalization of ACA8 from its normal cellular locale of the plasma membrane to the tonoplast also suppressed the aca4/11 phenotypes but not when a catalytically inactive mutant was used. These observations indicate that regulation of vacuolar Ca2+ sequestration is an integral component of plant immune signaling, but also that the action of tonoplast-localized Ca2+ pumps does not require specific regulatory elements not found in plasma membrane-localized pumps.


Assuntos
Proteínas de Arabidopsis , Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio , Cálcio/metabolismo , Imunidade Vegetal/fisiologia , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...