Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1761, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020018

RESUMO

We analyze a lossy linearized optomechanical system in the red-detuned regime under the rotating wave approximation. This so-called optomechanical state transfer protocol provides effective lossy frequency converter (quantum beam-splitter-like) dynamics where the strength of the coupling between the electromagnetic and mechanical modes is controlled by the optical steady-state amplitude. By restricting to a subspace with no losses, we argue that the transition from mode-hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a signature of the passive parity-time ([Formula: see text]) symmetry breaking transition in the underlying non-Hermitian quantum dimer. We compare the dynamics generated by the quantum open system (Langevin or Lindblad) approach to that of the [Formula: see text]-symmetric Hamiltonian, to characterize the cases where the two are identical. Additionally, we numerically explore the evolution of separable and correlated number states at zero temperature as well as thermal initial state evolution at room temperature. Our results provide a pathway for realizing non-Hermitian Hamiltonians in optomechanical systems at a quantum level.

2.
Sci Rep ; 9(1): 4382, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867465

RESUMO

We propose a technique for robust optomechanical state transfer using phase-tailored composite pulse driving with constant amplitude. Our proposal is inspired by coherent control techniques in lossless driven qubits. We demonstrate that there exist optimal phases for maximally robust excitation exchange in lossy strongly-driven optomechanical state transfer. In addition, our proposed composite phase driving also protects against random variations in the parameters of the system. However, this driving can take the system out of its steady state. For this reason, we use the ideal optimal phases to produce smooth sequences that both maintain the system close to its steady state and optimize the robustness of optomechanical state transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...