Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 28(1): 22, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934253

RESUMO

BACKGROUND: Cerebral arteriovenous malformations (cAVM) are a significant cause of intracranial hemorrhagic stroke and brain damage. The arteriovenous junctions in AVM nidus are known to have hemodynamic disturbances such as altered shear stress, which could lead to endothelial dysfunction. The molecular mechanisms coupling shear stress and endothelial dysfunction in cAVMs are poorly understood. We speculated that disturbed blood flow in artery-vein junctions activates Notch receptors and promotes endothelial mesenchymal plasticity during cAVM formation. METHODS: We investigated the expression profile of endothelial mesenchymal transition (EndMT) and cell adhesion markers, as well as activated Notch receptors, in 18 human cAVM samples and 15 control brain tissues, by quantitative real-time PCR (qRT-PCR) and immunohistochemical evaluation. Employing a combination of a microfluidic system, qRT-PCR, immunofluorescence, as well as invasion and inhibitor assays, the effects of various shear stress conditions on Notch-induced EndMT and invasive potential of human cerebral microvascular endothelial cells (hCMEC/d3) were analyzed. RESULTS: We found evidence for EndMT and enhanced expression of activated Notch intracellular domain (NICD3 and NICD4) in human AVM nidus samples. The expression of transmembrane adhesion receptor integrin α9/ß1 is significantly reduced in cAVM nidal vessels. Cell-cell adhesion proteins such as VE-cadherin and N-cadherin were differentially expressed in AVM nidus compared with control brain tissues. Using well-characterized hCMECs, we show that altered fluid shear stress steers Notch3 nuclear translocation and promotes SNAI1/2 expression and nuclear localization. Oscillatory flow downregulates integrin α9/ß1 and VE-cadherin expression, while N-cadherin expression and endothelial cell invasiveness are augmented. Gamma-secretase inhibitor RO4929097, and to a lesser level DAPT, prevent the mesenchymal transition and invasiveness of cerebral microvascular endothelial cells exposed to oscillatory fluid flow. CONCLUSIONS: Our study provides, for the first time, evidence for the role of oscillatory shear stress in mediating the EndMT process and dysregulated expression of cell adhesion molecules, especially multifunctional integrin α9/ß1 in human cAVM nidus. Concomitantly, our findings indicate the potential use of small-molecular inhibitors such as RO4929097 in the less-invasive therapeutic management of cAVMs.


Assuntos
Células Endoteliais , Malformações Arteriovenosas Intracranianas , Humanos , Células Endoteliais/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , Receptores Notch/metabolismo , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal
2.
Stroke ; 53(1): 279-289, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784742

RESUMO

Vascular malformations of the brain (VMB) comprise abnormal development of blood vessels. A small fraction of VMBs causes hemorrhages with neurological morbidity and risk of mortality in patients. Most often, they are symptomatically silent and are detected at advanced stages of disease progression. The most common forms of VMBs are arteriovenous and cavernous malformations in the brain. Radiopathological features of these diseases are complex with high phenotypic variability. Early detection of these malformations followed by preclusion of severe neurological deficits such as hemorrhage and stroke is crucial in the clinical management of patients with VMBs. The technological advances in high-throughput omics platforms have currently infused a zest in translational research in VMBs. Besides finding novel biomarkers and therapeutic targets, these studies have withal contributed significantly to the understanding of the etiopathogenesis of VMBs. Here we discuss the recent advances in predictive and prognostic biomarker research in sporadic and familial arteriovenous malformations as well as cerebral cavernous malformations. Furthermore, we analyze the clinical applicability of protein and noncoding RNA-based molecular-targeted therapies which may have a potentially key role in disease management.


Assuntos
Biomarcadores/metabolismo , Encéfalo/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Malformações Arteriovenosas Intracranianas/patologia , Encéfalo/efeitos dos fármacos , Cabeça/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/tratamento farmacológico , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico , Malformações Arteriovenosas Intracranianas/tratamento farmacológico , Preparações Farmacêuticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...