Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 12: e117169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903959

RESUMO

Background: The InBIO Barcoding Initiative (IBI) Dataset - DS-IBILP08 contains records of 2350 specimens of moths (Lepidoptera species that do not belong to the superfamily Papilionoidea). All specimens have been morphologically identified to species or subspecies level and represent 1158 species in total. The species of this dataset correspond to about 42% of mainland Portuguese Lepidoptera species. All specimens were collected in mainland Portugal between 2001 and 2022. All DNA extracts and over 96% of the specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources. New information: The authors enabled "The InBIO Barcoding Initiative Database: DNA barcodes of Portuguese moths" in order to release the majority of data of DNA barcodes of Portuguese moths within the InBIO Barcoding Initiative. This dataset increases the knowledge on the DNA barcodes of 1158 species from Portugal belonging to 51 families. There is an increase in DNA barcodes of 205% in Portuguese specimens publicly available. The dataset includes 61 new Barcode Index Numbers. All specimens have their DNA barcodes publicly accessible through BOLD online database and the distribution data can be accessed through the Global Biodiversity Information Facility (GBIF).

2.
Biodivers Data J ; 12: e118010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784157

RESUMO

Background: The InBIO Barcoding Initiative (IBI) Orthoptera dataset contains records of 420 specimens covering all the eleven Orthoptera families occurring in Portugal. Specimens were collected in continental Portugal from 2005 to 2021 and were morphologically identified to species level by taxonomists. A total of 119 species were identified corresponding to about 77% of all the orthopteran species known from continental Portugal. New information: DNA barcodes of 54 taxa were made public for the first time at the Barcode of Life Data System (BOLD). Furthermore, the submitted sequences were found to cluster in 129 BINs (Barcode Index Numbers), 35 of which were new additions to the Barcode of Life Data System (BOLD). All specimens have their DNA barcodes publicly accessible through BOLD online database. Stenobothruslineatus is recorded for the first time for continental Portugal. This dataset greatly increases the knowledge on the DNA barcodes and distribution of Orthoptera from Portugal. All DNA extractions and most specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources.

3.
Biodivers Data J ; 12: e117172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481855

RESUMO

Background: Bees are important actors in terrestrial ecosystems and are recognised for their prominent role as pollinators. In the Iberian Peninsula, approximately 1,100 bee species are known, with nearly 100 of these species being endemic to the Peninsula. A reference collection of DNA barcodes, based on morphologically identified bee specimens, representing 514 Iberian species, was constructed. The "InBIO Barcoding Initiative Database: DNA Barcodes of Iberian bees" dataset contains records of 1,059 sequenced specimens. The species of this dataset correspond to about 47% of Iberian bee species diversity and 21% of endemic species diversity. For peninsular Portugal only, the corresponding coverage is 71% and 50%. Specimens were collected between 2014 and 2022 and are deposited in the research collection of Thomas Wood (Naturalis Biodiversity Center, The Netherlands), in the FLOWer Lab collection at the University of Coimbra (Portugal), in the Andreia Penado collection at the Natural History and Science Museum of the University of Porto (MHNC-UP) (Portugal) and in the InBIO Barcoding Initiative (IBI) reference collection (Vairão, Portugal). New information: Of the 514 species sequenced, 75 species from five different families are new additions to the Barcode of Life Data System (BOLD) and 112 new BINs were added. Whilst the majority of species were assigned to a single BIN (94.9%), 27 nominal species were assigned to multiple BINs. Although the placement into multiple BINs may simply reflect genetic diversity and variation, it likely also represents currently unrecognised species-level diversity across diverse taxa, such as Amegillaalbigena Lepeletier, 1841, Andrenarussula Lepeletier, 1841, Lasioglossumleucozonium (Schrank, 1781), Nomadafemoralis Morawitz, 1869 and Sphecodesalternatus Smith, 1853. Further species pairs of Colletes, Hylaeus and Nomada were placed into the same BINs, emphasising the need for integrative taxonomy within Iberia and across the Mediterranean Basin more broadly. These data substantially contribute to our understanding of bee genetic diversity and DNA barcodes in Iberia and provide an important baseline for ongoing taxonomic revisions in the West Palaearctic biogeographical region.

4.
Zookeys ; 1168: 41-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415718

RESUMO

The herpetofauna of São Tomé and Príncipe consists of nine species of amphibians, all endemic, and 21 species of terrestrial reptiles, of which 17 are endemic. Our current knowledge regarding its natural history, ecology, and distribution is limited. Here two important tools are provided to support researchers, conservationists, and local authorities in the identification of the country's herpetofauna: an illustrated key to the herpetofauna of the two islands and surroundings islets and a DNA barcode reference library. The keys allow a rapid and unambiguous morphological identification of all occurring species. The DNA barcodes for the entire herpetofauna of the country were produced from 79 specimens, all of which are deposited in museum collections. The barcodes generated are available in online repositories and can be used to provide unambiguous molecular identification of most of the species. Future applications and use of these tools are briefly discussed.

5.
Biodivers Data J ; 11: e97484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327295

RESUMO

Background: The Trichoptera are an important component of freshwater ecosystems. In the Iberian Peninsula, 380 taxa of caddisflies are known, with nearly 1/3 of the total species being endemic in the region. A reference collection of morphologically identified Trichoptera specimens, representing 142 Iberian taxa, was constructed. The InBIO Barcoding Initiative (IBI) Trichoptera 01 dataset contains records of 438 sequenced specimens. The species of this dataset correspond to about 37% of Iberian Trichoptera species diversity. Specimens were collected between 1975 and 2018 and are deposited in the IBI collection at the CIBIO (Research Center in Biodiversity and Genetic Resources, Portugal) or in the collection Marcos A. González at the University of Santiago de Compostela (Spain). New information: Twenty-nine species, from nine different families, were new additions to the Barcode of Life Data System (BOLD). A success identification rate of over 80% was achieved when comparing morphological identifications and DNA barcodes for the species analysed. This encouraging step advances incorporation of informed Environmental DNA tools in biomonitoring schemes, given the shortcomings of morphological identifications of larvae and adult Caddisflies in such studies. DNA barcoding was not successful in identifying species in six Trichoptera genera: Hydropsyche (Hydropsychidae), Athripsodes (Leptoceridae), Wormaldia (Philopotamidae), Polycentropus (Polycentropodidae) Rhyacophila (Rhyacophilidae) and Sericostoma (Sericostomatidae). The high levels of intraspecific genetic variability found, combined with a lack of a barcode gap and a challenging morphological identification, rendered these species as needing additional studies to resolve their taxonomy.

6.
Biodivers Data J ; 11: e98743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327368

RESUMO

Background: DNA barcoding technologies have provided a powerful tool for the fields of ecology and systematics. Here, we present a part of the InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of cuckoo wasps (Hymenoptera, Chrysididae) dataset representing 144 specimens and 103 species, covering approximately 44% of the Iberian and 21% of the European fauna. The InBIO Barcoding Initiative (IBI - DNA Barcoding Portuguese terrestrial invertebrate biodiversity) aims to fill the barcoding gap for the terrestrial invertebrate taxa. All DNA extractions are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources and specimens are deposited in the University of Mons collection (Belgium) and in the Natur-Museum in Lucerne (Switzerland). New information: This dataset increases the knowledge on the DNA barcodes and distribution of 102 species of cuckoo wasps. A total of 52 species, from 11 different genera, were new additions to the Barcode of Life Data System (BOLD), with DNA barcodes for another 44 species added from under-represented taxa in BOLD. All specimens have their DNA barcodes publicly accessible through the BOLD online database. Nine cuckoo wasp species are newly recorded for Portugal. Additionally, two new species for science are described: Chrysiscrossi Rosa, sp. nov. from southern Portugal and Hedychridiumcalcarium Rosa, sp. nov. from eastern Spain. Several taxonomic changes are proposed and Hedychrumrutilans Dahlbom, 1845 is found to consist of two different taxa that can be found in sympatry, Hedychrumrutilans s. str. and Hedychrumviridaureum Tournier, 1877 stat. nov. Stilbumwestermanni Dahlbom, 1845 stat. nov. is confirmed as distinct from Stilbumcalens (Fabricius, 1781), with the latter species not confirmed as present in Iberia; barcoded Stilbum material from Australia is distinct and represents Stilbumamethystium (Fabricius, 1775) sp. resurr.; Portuguese material identified as Hedychridiumchloropygum Buysson, 1888 actually belongs to Hedychridiumcaputaureum Trautmann & Trautmann, 1919, the first confirmed record of this species from Iberia. Philoctetesparvulus (Dahlbom, 1845) is confirmed to be a synonym of Philoctetespunctulatus (Dahlbom, 1845). Chrysislusitanica Bischoff, 1910 is confirmed as a valid species. Chrysishebraeica Linsenmaier, 1959 stat. nov. is raised to species status.

7.
Mol Ecol Resour ; 22(6): 2232-2247, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305077

RESUMO

Traditional detection of aquatic invasive species via morphological identification is often time-consuming and can require a high level of taxonomic expertise, leading to delayed mitigation responses. Environmental DNA (eDNA) detection approaches of multiple species using Illumina-based sequencing technology have been used to overcome these hindrances, but sample processing is often lengthy. More recently, portable nanopore sequencing technology has become available, which has the potential to make molecular detection of invasive species more widely accessible and substantially decrease sample turnaround times. However, nanopore-sequenced reads have a much higher error rate than those produced by Illumina platforms, which has so far hindered the adoption of this technology. We provide a detailed laboratory protocol and bioinformatic tools (msi package) to increase the reliability of nanopore sequencing to detect invasive species, and we test its application using invasive bivalves while comparing it with Illumina-based sequencing. We sampled water from sites with pre-existing bivalve occurrence and abundance data, and contrasting bivalve communities, in Italy and Portugal. Samples were extracted, amplified, and sequenced by the two platforms. The mean agreement between sequencing methods was 69% and the difference between methods was nonsignificant. The lack of detections of some species at some sites could be explained by their known low abundances. This is the first reported use of MinION to detect aquatic invasive species from eDNA samples.


Assuntos
Bivalves , DNA Ambiental , Nanoporos , Animais , Bivalves/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espécies Introduzidas , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
8.
Ecol Appl ; 31(8): e02457, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529299

RESUMO

In multifunctional landscapes, diverse communities of flying vertebrate predators provide vital services of insect pest control. In such landscapes, conservation biocontrol should benefit service-providing species to enhance the flow, stability and resilience of pest control services supporting the production of food and fiber. However, this would require identifying key service providers, which may be challenging when multiple predators interact with multiple pests. Here we provide a framework to identify the functional role of individual species to pest control in multifunctional landscapes. First, we used DNA metabarcoding to provide detailed data on pest species predation by diverse predator communities. Then, these data were fed into an extensive network analysis, in which information relevant for conservation biocontrol is gained from parameters describing network structure (e.g., modularity) and species roles in such network (e.g., centrality, specialization). We applied our framework to a Mediterranean landscape, where 19 bat species were found to feed on 132 insect pest species. Metabarcoding data revealed potentially important bats that consumed insect pest species in high frequency and/or diversity. Network analysis showed a modular structure, indicating sets of bat species that are required to regulate specific sets of insect pests. A few generalist bats had particularly important roles, either at network or module levels. Extinction simulations highlighted six bats, including species of conservation concern, which were sufficient to ensure that over three-quarters of the pest species had at least one bat predator. Combining DNA metabarcoding and ecological network analysis provides a valuable framework to identify individual species within diverse predator communities that might have a disproportionate contribution to pest control services in multifunctional landscapes. These species can be regarded as candidate targets for conservation biocontrol, although additional information is needed to evaluate their actual effectiveness in pest regulation.


Assuntos
Quirópteros , Código de Barras de DNA Taxonômico , Animais , Insetos/fisiologia , Controle de Pragas , Controle Biológico de Vetores , Comportamento Predatório
9.
Biodivers Data J ; 8: e55137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821214

RESUMO

BACKGROUND: The use of DNA barcoding allows unprecedented advances in biodiversity assessments and monitoring schemes of freshwater ecosystems; nevertheless, it requires the construction of comprehensive reference collections of DNA sequences that represent the existing biodiversity. Plecoptera are considered particularly good ecological indicators and one of the most endangered groups of insects, but very limited information on their DNA barcodes is available in public databases. Currently, less than 50% of the Iberian species are represented in BOLD. NEW INFORMATION: The InBIO Barcoding Initiative Database: contribution to the knowledge on DNA barcodes of Iberian Plecoptera dataset contains records of 71 specimens of Plecoptera. All specimens have been morphologically identified to species level and belong to 29 species in total. This dataset contributes to the knowledge on the DNA barcodes and distribution of Plecoptera from the Iberian Peninsula and it is one of the IBI database public releases that makes available genetic and distribution data for a series of taxa.The species represented in this dataset correspond to an addition to public databases of 17 species and 21 BINs. Fifty-eight specimens were collected in Portugal and 18 in Spain during the period of 2004 to 2018. All specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources and their DNA barcodes are publicly available in the Barcode of Life Data System (BOLD) online database. The distribution dataset can be freely accessed through the Global Biodiversity Information Facility (GBIF).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...