Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14364, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38906940

RESUMO

Despite many interventions, science education remains highly inequitable throughout the world. Internet-enabled experimental learning has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to expose Latinx life science undergraduate students to introductory concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8000 km from the experimental site. Through this curriculum, the students completed an assignment testing bacteria contamination in water using LoCs. We showed that this approach was sufficient to reduce the students' fear of programming and increase their interest in continuing careers with a computer science component. Altogether, we conclude that LoC-based internet-enabled learning can become a powerful tool to train Latinx students and increase the diversity in STEM.


Assuntos
Internet , Estudantes , Humanos , Dispositivos Lab-On-A-Chip , Currículo , Disciplinas das Ciências Biológicas/educação
2.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016807

RESUMO

The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Organoides , Neurônios
3.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503236

RESUMO

The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.

4.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205466

RESUMO

Despite many interventions, science education remains highly inequitable throughout the world. Among all life sciences fields, Bioinformatics and Computational Biology suffer from the strongest underrepresentation of racial and gender minorities. Internet-enabled project-based learning (PBL) has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to train Latinx life science undergraduate students in concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8,000 km from the experimental site. We showed that this approach was sufficient to develop programming skills and increase the interest of students in continuing careers in Bioinformatics. Altogether, we conclude that LoC-based Internet-enabled PBL can become a powerful tool to train Latinx students and increase the diversity in STEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...