Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37891942

RESUMO

Enhanced solvent extraction (ESE) and pressurized liquid extraction (PLE) have been used for the first time to obtain antioxidant compounds from Prestonia mollis leaves. The effects of pressure (100-250 bar), temperature (55-75 °C) and the composition of the extraction solvent (ethanol, water and hydroalcoholic mixtures) were evaluated according to multilevel factorial designs. PLE provided the largest extraction yields compared to ESE, as well as a greater impact of the operating conditions studied. The highest total phenolic content was obtained when using a hydroalcoholic mixture (CO2/ethanol/water 50/25/25) through ESE at 100 bar and 75 °C. The antioxidant capacity of this extract is related to higher concentration levels of the identified flavonoids: Quercetin 3-O-xylosyl-rutinoside, Kaempferol 3-(2G-apiosylrobinobioside) and Kaempferol 4'-glucoside 7-rhamnoside. This extract was tested for the supercritical impregnation of polylactic acid (PLA), which is a polymer widely used in the biomedical industry. The influence of pressure (100-400 bar), temperature (35-55 °C), amount of extract (3-6 mL) and impregnation time (1-2 h) have been evaluated. The best results were obtained by impregnating 3 mL of extract at 100 bar and 55 °C for 2 h, achieving 10% inhibition with DPPH methods. The extract presented a potentially suitable impregnation of PLA for biomedical applications.

2.
Antioxidants (Basel) ; 12(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37507954

RESUMO

The addition of naturally active compounds to implantable polymers is an efficient strategy against inflammation issues that might lead to rejection, while promoting controlled re-endothelialization of the tissues. This work proposes the use of winemaking by-products with high active properties of biomedical interest to obtain bioactive PLA by using supercritical technologies. First, two red grape pomace extracts, obtained by high-pressure extraction with supercritical CO2 and cosolvents (either ethanol or water-ethanol), have been studied. Second, two impregnation methods have been studied with both extracts, traditional supercritical CO2-assisted impregnation (SSI) and a novel pressurized soaking method (PSI). The amount of extract impregnated as well as the bioactivity levels achieved-i.e., antioxidant, antimicrobial, and anti-inflammatory properties- have been determined for each extract and impregnation method at different pressure and temperature conditions. Both extracts obtained had good antioxidant, anti-inflammatory, and antibacterial capacities, especially the hydroethanolic one (0.50 ± 0.03 mg TE/g versus 0.24 ± 0.03 mg TE/g, respectively). Regarding impregnated filaments, impregnation loadings depended especially on the extract and P/T conditions, providing up to 8% (extract mass/polymer mass) of impregnation. The antioxidant capacity increased noteworthily by using the ethanolic extract by PSI, with values near 100 µg TE/g PLA.

3.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745986

RESUMO

Identifying new polymers from natural resources that can be effectively functionalized can have a substantial impact on biomedical devices and food preservation fields. Some of these polymers would be made of biodegradable, renewable and compostable materials, and present the kind of porosity required to effectively carry active compounds that confer on them the desired properties for their intended applications. Some natural extracts, such as mango leaf extract, have been proven to have high levels of antioxidant, antimicrobial or anti-inflammatory properties, making them good candidates for controlled-release applications. This work intends to investigate the supercritical impregnation of different types of polymers (ABS, PETG, TPU, PC and PCL) with mango leaf extract. The influence of temperature and pressure on the polymers' structure (swelling and foaming processes) and their different behaviors have been analyzed. Thus, TPU and PC experience minimal structural modifications, while PETG, PCL and ABS, on the other hand, suffer quite significant structural changes. TPU and PETG were selected as the representative polymers for each one of these behaviors to delve into mango leaf extract impregnation processes. The bioactive capacity of the extract is present in either impregnated polymer, with 25.7% antioxidant activity by TPU processed at 35 °C and 100 bar and 32.9% antioxidant activity by PETG impregnated at 75 °C and 400 bar.

4.
Polymers (Basel) ; 13(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204192

RESUMO

Ketoprofen (KET) is an anti-inflammatory drug often used in medicine due to its analgesic and antipyretic effects. If it is administered in a controlled form by means of different dosing devices, it acts throughout the patient's recovery period improving its efficacy. This study intends to support the use of supercritical solvent impregnation (SSI) as an efficient technique to develop polylactic acid (PLA) functionalized with ketoprofen, for use as controlled drug release devices. For this purpose, firstly, the influence of different SSI variables on the desirable swelling of the polymer structure, while avoiding their foaming, were evaluated. Then, the resulting ketoprofen loading was evaluated under different pressure/temperature conditions. It was generally found that as pressure and temperature are higher, the drug impregnation loads also increase. The maximum impregnation loads (at about 9% KET/PLA) were obtained at 200 bar and 75 °C. In vitro drug release tests of the impregnated compound were also carried out, and it was found that drug release profiles were also dependent on the specific pressure and temperature conditions used for the impregnation of each polymer filament.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...