Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 61(3): 363-78, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16439011

RESUMO

Small cetacean bycatch in gillnet fisheries may be reduced by deterring odontocetes from nets acoustically. However, different odontocete species may respond differently to acoustic signals from alarms. Therefore, in this study a striped dolphin and a harbour porpoise were subjected simultaneously to sounds produced by the XP-10 experimental acoustic alarm. The alarm produced 0.3s tonal signals randomly selected from a set of 16 with fundamental frequencies between 9 and 15kHz, with a constant pulse interval of 4.0s (duty cycle 8%) and a Source Level range of 133-163dB re 1muPa (rms). The effect of the alarm was judged by comparing the animals' respiration rate and position relative to the alarm during test periods with those during baseline periods. As in a previous study on two porpoises with the same alarm, the porpoise in the present study reacted strongly to the alarm by swimming away from it and increasing his respiration rate. The striped dolphin, however, showed no reaction to the active alarm. Based on harbour porpoise audiograms and the specific audiogram of the striped dolphin in the present study, and the low background noise levels during the experiment, both animals must have heard the alarm signals clearly. This study indicates that cetacean species are not equally sensitive to human-made noise disturbance. Therefore, source levels of acoustic alarms should be adapted to the species they are supposed to deter. In addition, alarms should be tested on each odontocete species for which they are intended to reduce bycatch.


Assuntos
Estimulação Acústica/veterinária , Comportamento Animal , Pesqueiros/métodos , Phocoena/psicologia , Stenella/psicologia , Estimulação Acústica/instrumentação , Estimulação Acústica/psicologia , Animais , Feminino , Masculino , Movimento , Phocoena/fisiologia , Respiração , Água do Mar , Stenella/fisiologia
2.
Mar Environ Res ; 59(4): 287-307, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15589983

RESUMO

To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network is currently under development: Acoustic Communication network for Monitoring of underwater Environment in coastal areas (ACME). Marine mammals might be affected by ACME sounds since they use sounds of similar frequencies (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour porpoise. Therefore, as part of an environmental impact assessment program, two captive harbour porpoises were subjected to four sounds, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' positions and respiration rates during a test period with those during a baseline period. Each of the four sounds could be made a deterrent by increasing the amplitude of the sound. The porpoises reacted by swimming away from the sounds and by slightly, but significantly, increasing their respiration rate. From the sound pressure level distribution in the pen, and the distribution of the animals during test sessions, discomfort sound level thresholds were determined for each sound. In combination with information on sound propagation in the areas where the communication system may be deployed, the extent of the 'discomfort zone' can be estimated for several source levels (SLs). The discomfort zone is defined as the area around a sound source that harbour porpoises are expected to avoid. Based on these results, SLs can be selected that have an acceptable effect on harbour porpoises in particular areas. The discomfort zone of a communication sound depends on the selected sound, the selected SL, and the propagation characteristics of the area in which the sound system is operational. In shallow, winding coastal water courses, with sandbanks, etc., the type of habitat in which the ACME sounds will be produced, propagation loss cannot be accurately estimated by using a simple propagation model, but should be measured on site. The SL of the communication system should be adapted to each area (taking into account bounding conditions created by narrow channels, sound propagation variability due to environmental factors, and the importance of an area to the affected species). The discomfort zone should not prevent harbour porpoises from spending sufficient time in ecologically important areas (for instance feeding areas), or routes towards these areas.


Assuntos
Acústica , Toninhas , Comportamento Predatório , Navios , Natação , Comunicação Animal , Animais , Comunicação , Coleta de Dados , Eletrônica , Meio Ambiente , Masculino , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...