Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Dev Biol ; 12: 37, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23244389

RESUMO

BACKGROUND: Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies ß- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into ß-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS: pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating ß-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on ß- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of ß- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS: In zebrafish, pax4 is not required for the generation of the first ß- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in ß-cells differentiation appeared later in vertebrate evolution.


Assuntos
Embrião não Mamífero/citologia , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Morfolinos/farmacologia , Fatores de Transcrição Box Pareados/biossíntese , Fatores de Transcrição Box Pareados/genética , Pâncreas/embriologia , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/biossíntese , Proteínas de Peixe-Zebra/biossíntese
2.
J Biol Chem ; 285(18): 13863-73, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20177065

RESUMO

Pax6 is a well conserved transcription factor that contains two DNA-binding domains, a paired domain and a homeodomain, and plays a key role in the development of eye, brain, and pancreas in vertebrates. The recent identification of the zebrafish sunrise mutant, harboring a mutation in the pax6b homeobox and presenting eye abnormalities but no obvious pancreatic defects, raised a question about the role of pax6b in zebrafish pancreas. We show here that pax6b does play an essential role in pancreatic endocrine cell differentiation, as revealed by the phenotype of a novel zebrafish pax6b null mutant and of embryos injected with pax6b morpholinos. Pax6b-depleted embryos have almost no beta cells, a strongly reduced number of delta cells, and a significant increase of epsilon cells. Through the use of various morpholinos targeting intron-exon junctions, pax6b RNA splicing was perturbed at several sites, leading either to retention of intronic sequences or to deletion of exonic sequences in the pax6b transcript. By this strategy, we show that deletion of the Pax6b homeodomain in zebrafish embryos does not disturb pancreas development, whereas lens formation is strongly affected. These data thus provide the explanation for the lack of pancreatic defects in the sunrise pax6b mutants. In addition, partial reduction of Pax6b function in zebrafish embryos performed by injection of small amounts of pax6b morpholinos caused a clear rise in alpha cell number and in glucagon expression, emphasizing the importance of the fine tuning of the Pax6b level to its biological activity.


Assuntos
Diferenciação Celular/fisiologia , Células Endócrinas/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Pâncreas/embriologia , Proteínas Repressoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Células Endócrinas/citologia , Proteínas do Olho/genética , Glucagon/biossíntese , Glucagon/genética , Proteínas de Homeodomínio/genética , Mutação , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Pâncreas/citologia , Splicing de RNA/fisiologia , Proteínas Repressoras/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...