Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7862, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543782

RESUMO

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

2.
Science ; 367(6473): 79-83, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896715

RESUMO

Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo-electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega-electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega-electron volt-scale DLA.

3.
Nat Commun ; 10(1): 3309, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346175

RESUMO

Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.

4.
Sci Rep ; 9(1): 8999, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227721

RESUMO

Inverse design methods produce nanophotonic devices with arbitrary geometries that show high efficiencies as well as novel functionalities. Ensuring fabricability during optimization of these unrestricted device geometries is a major challenge for these design methods. In this work, we construct a fabrication constraint penalty function for level set geometry representations of these devices. This analytical penalty function limits both the gap size and boundary curvature of a device. We incorporate this penalty in a fully automated optical design flow using a quasi-Newton optimization method. The performance of our design method is evaluated by designing a series of waveguide demultiplexers (WDM) and mode converters with various footprints and minimum feature sizes. Finally, we design and experimentally characterize three WDMs with a 80 nm, 120 nm and 160 nm feature size.

5.
Comput Biol Med ; 96: 147-156, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573668

RESUMO

Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost.


Assuntos
Citometria de Fluxo/métodos , Holografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Leucócitos/citologia , Análise de Célula Única/métodos , Algoritmos , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Holografia/instrumentação , Humanos , Aprendizado de Máquina , Miniaturização , Análise de Célula Única/instrumentação
6.
Opt Express ; 26(4): 4023-4034, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475258

RESUMO

We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities in different geometries, including conventional couplers for single-polarization and single-wavelength operation, polarization-insensitive couplers, and wavelength-demultiplexing couplers. In particular, we design a fiber-to-chip blazed grating with under 0.2 dB insertion loss that requires a single etch to fabricate and no back-reflector.

7.
Lab Chip ; 17(7): 1287-1296, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28252674

RESUMO

Safe, high-rate and cost-effective cell sorting is important for clinical cell isolation. However, commercial fluorescence-activated cell sorters (FACS) are expensive and prone to aerosol-induced sample contamination. Here we report a microfluidic cell sorter allowing high rate and fully enclosed cell sorting. The sorter chip consists of an array of micro heating hotspots. Pulsed resistive heating in the hotspots produces numerous micro vapor bubbles with short duration, which gives rise to a rapid jet flow for cell sorting. With this method, we demonstrated high sorting rate comparable to commercial FACS and the significant enrichment of rare cancer cells. This vapor bubble based cell sorting method can be a powerful tool for contamination-free and affordable clinical cell sorting such as circulating tumor cell isolation and cancer cell therapy.


Assuntos
Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Citometria de Fluxo/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos
8.
Nano Lett ; 16(7): 4396-403, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27244478

RESUMO

An optical antenna forms the subwavelength bridge between free space optical radiation and localized electromagnetic energy. Its localized electromagnetic modes strongly depend on its geometry and material composition. Here, we present the design and experimental realization of a novel V-shaped all-dielectric antenna based on high-index amorphous silicon with a strong magnetic dipole resonance in the visible range. As a result, it exhibits extraordinary bidirectional scattering into diametrically opposite directions. The scattering direction is effectively controlled by the incident wavelength, rendering the antenna a passive bidirectional wavelength router. A detailed multipole decomposition analysis reveals that the excitation and abrupt phase change of an out-of-plane polarized magnetic dipole and an in-plane electric quadrupole are essential for the directivity switching. Previously, noble metals have been extensively exploited for plasmonic directional nanoantenna design. However, these inevitably suffer from high intrinsic ohmic losses and a relatively weak magnetic response to the incident light. Compared to a similar gold plasmonic nanoantenna design, we show that the silicon-based antennas demonstrate stronger magnetic scattering with minimal absorption losses. Our results indicate that all-dielectric antennas will open exciting possibilities for efficient manipulation of light-matter interactions.

9.
Lab Chip ; 15(4): 1123-32, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25537881

RESUMO

A compelling clinical need exists for inexpensive, portable haematology analyzers that can be utilized at the point-of-care in emergency settings or in resource-limited settings. Development of a label-free, microfluidic blood analysis platform is the first step towards such a miniaturized, cost-effective system. Here we assemble a compact lens-free in-line holographic microscope and employ it to image blood cells flowing in a microfluidic chip, using a high-speed camera and stroboscopic illumination. Numerical reconstruction of the captured holograms allows classification of unlabeled leukocytes into three main subtypes: lymphocytes, monocytes and granulocytes. A scale-space recognition analysis to evaluate cellular size and internal complexity is also developed and used to build a 3-part leukocyte differential. The lens-free image-based classification is compared to the 3-part white blood cell differential generated by using a conventional analyzer on the same blood sample and is found to be in good agreement with it.


Assuntos
Citometria de Fluxo/instrumentação , Dispositivos Lab-On-A-Chip , Leucócitos/citologia , Técnicas Analíticas Microfluídicas , Voluntários Saudáveis , Humanos , Técnicas Analíticas Microfluídicas/instrumentação
10.
ACS Nano ; 8(8): 8232-41, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25033422

RESUMO

Specially designed plasmonic antennas can, by far-field interference of different antenna elements or a combination of multipolar antenna modes, scatter light unidirectionally, allowing for directional light control at the nanoscale. One of the most basic and compact geometries for such antennas is a nanorod with broken rotational symmetry, in the shape of the letter V. In this article, we show that these V-antennas unidirectionally scatter the emission of a local dipole source in a direction opposite the undirectional side scattering of a plane wave. Moreover, we observe high directivity, up to 6 dB, only for certain well-defined positions of the emitter relative to the antenna. By employing a rigorous eigenmode expansion analysis of the V-antenna, we fully elucidate the fundamental origin of its directional behavior. All findings are experimentally verified by measuring the radiation patterns of a scattered plane wave and the emission pattern of fluorescently doped PMMA positioned in different regions around the antenna. The fundamental interference effects revealed in the eigenmode expansion can serve as guidelines in the understanding and further development of nanoscale directional scatterers.

11.
Nano Lett ; 14(5): 2322-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24702521

RESUMO

We present the experimental observation of spectral lines of distinctly different shapes in the optical extinction cross-section of metallic nanorod antennas under near-normal plane wave illumination. Surface plasmon resonances of odd mode parity present Fano interference in the scattering cross-section, resulting in asymmetric spectral lines. Contrarily, modes with even parity appear as symmetric Lorentzian lines. Finite element simulations are used to verify the experimental results. The emergence of either constructive or destructive mode interference is explained with a semianalytical 1D line current model. This simple model directly explains the mode-parity dependence of the Fano-like interference. Plasmonic nanorods are widely used as half-wave optical dipole antennas. Our findings offer a perspective and theoretical framework for operating these antennas at higher-order modes.

12.
Lab Chip ; 13(21): 4257-62, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24056677

RESUMO

We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.


Assuntos
DNA/análise , Magnetismo , Hibridização de Ácido Nucleico/métodos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
13.
Nano Lett ; 13(8): 3843-9, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23898977

RESUMO

Unidirectional side scattering of light by a single-element plasmonic nanoantenna is demonstrated using full-field simulations and back focal plane measurements. We show that the phase and amplitude matching that occurs at the Fano interference between two localized surface plasmon modes in a V-shaped nanoparticle lies at the origin of this effect. A detailed analysis of the V-antenna modeled as a system of two coherent point-dipole sources elucidates the mechanisms that give rise to a tunable experimental directivity as large as 15 dB. The understanding of Fano-based directional scattering opens a way to develop new directional optical antennas for subwavelength color routing and self-referenced directional sensing. In addition, the directionality of these nanoantennas can increase the detection efficiency of fluorescence and surface enhanced Raman scattering.

14.
Opt Express ; 19(12): 11034-51, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716332

RESUMO

A metallic nanocross geometry sustaining broad dipole and sharp higher order localized surface plasmon resonances is investigated. Spectral tunability is achieved by changing the cross arm length and the angle between the arms. The degree of rotational symmetry of the nanocross is varied by adding extra arms, changing the arm angle and shifting the arm intersection point. The particle's symmetry is shown to have a crucial influence on the plasmon coupling to incident radiation. Pronounced dipole, quadrupole, octupole and Fano resonances are observed in individual cross structures. Furthermore, the nanocross geometry proves to be a useful building block for coherently coupled plasmonic dimers and trimers where the reduced symmetry results in hybridized subradiant and superradiant modes and multiple Fano interferences. Finite difference time domain calculations of absorption and scattering cross-sections as well as charge density profiles are used to reveal the nature of the different plasmon modes. Experimental spectra for the discussed geometries support the calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...