Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400554, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728595

RESUMO

Electrochemical energy storage systems based on sulfur and lithium can theoretically deliver high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolution of sulfur to high-molecular weight lithium polysulfides (LiPs with general formula Li2Sn, n≥4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs by diffusion or under the effect of the electric field to the lithium anode, activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and cycling stability. These drawbacks poses challenges to the commercialization of Li/S cells in the short term. In this study, we report on the decoration of reduced graphene oxide with MoO3 particles to enhance interactions with LiPs and retain sulfur at the cathode side. The combination of experiments and density functional theory calculations demonstrated improvements in binding interactions between the cathode and sulfur species, enhancing the cycling stability of the Li/S cells.

2.
Materials (Basel) ; 15(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591451

RESUMO

In this work, we studied the phases in a Mg-Ti-O system using a 1:1 formulation of MgO:TiO2, mixing synthetic brucite of Mexican origin with TiO2 microparticles of high purity, with a heat treatment at 1100 °C for 1 h. Due to its valence electrons, TiO2 can contribute to the sintering process to improve density in MgO products. The raw materials and formulation by XPS and X-RD techniques were characterized. The results demonstrate the presence of different oxidation states in titania and the formation of different oxides in the Mg-Ti-O system when mixed and calcined at 1100 °C; additionally, we estimated the formation of vacancies in the crystal lattice during the transformation from hexagonal brucite to magnesia with a cubic structure centered on the faces. Its thermal behavior is indicated by the MgO-TiO2 phase diagram.

3.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407755

RESUMO

The deterioration of the refractory lining represents a significant problem for the smooth operation in the ferroalloys industry, particularly in the production of silicomanganese, due to the periodic requirements of substitution of the damaged refractory. Within this context, magnesia refractories are commonly employed in the critical zones of the furnaces used in silicomanganese production since the slag involved in the process has a basic character. The behavior of MgO-ZrO2 ceramic composites with different ZrO2 nanoparticles (0, 1, 3, and 5 wt.%) contents in the presence of silicomanganese slags is proposed in this manuscript. XPS, XRD and SEM-EDX were used to evaluate the properties of the ceramic composite against the silicomanganese slag. The static corrosion test was used to evaluate the corrosion of the refractory. Results suggest that corrosion is controlled by the change in slag viscosity due to the reaction between CaZrO3 and the melted slag. Besides, ZrO2 nanoparticles located at both triple points and grain boundaries act as a barrier for the slag advance within the refractory. The utilization of MgO refractories with ZrO2 nanoparticles can extend the life of furnaces used to produce silicomanganese.

4.
Materials (Basel) ; 14(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924883

RESUMO

This study investigates the corrosion mechanism on 100 wt.% MgO and 95 wt.% MgO with 5 wt.% nano-ZrO2 ceramic composites. First, MgO powder and powder mixtures (MgO + nano ZrO2) were uniaxially and isostatically pressed; then, they were sintered at 1650 °C. Corrosion by copper slag was studied in sintered samples. Physical properties, microstructure, and penetration of the slag in the refractory were studied. Results reveal that ZrO2 nanoparticles enhanced the samples' densification, promoting grain growth due to diffusion of vacancies during the sintering process. Additionally, magnesia bricks were severely corroded, if compared with those doped with nano-ZrO2, mainly due to the dissolution of MgO grains during the chemical attack by copper slag.

5.
Materials (Basel) ; 13(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369963

RESUMO

In the present work, the effect of mineral aggregates (pumice stone and expanded clay aggregates) and chemical admixtures (superplasticizers and shrinkage reducing additives) as an alternative internal curing technique was investigated, to improve the properties of high-performance concrete. In the fresh and hardened state, concretes with partial replacements of Portland cement (CPC30R and OPC40C) by pulverized fly ash in combination with the addition of mineral aggregates and chemical admixtures were studied. The physical, mechanical, and durability properties in terms of slump, density, porosity, compressive strength, and permeability to chloride ions were respectively determined. The microstructural analysis was carried out by scanning electronic microscopy. The results highlight the effect of the addition of expanded clay aggregate on the internal curing of the concrete, which allowed developing the maximum compressive strength at 28 days (61 MPa). Meanwhile, the replacement of fine aggregate by 20% of pumice stone allowed developing the maximum compressive strength (52 MPa) in an OPC-based concrete at 180 days. The effectiveness of internal curing to develop higher strength is attributed to control in the porosity and a high water release at a later age. Finally, the lowest permeability value at 90 days (945 C) was found by the substitutions of fine aggregate by 20% of pumice stone saturated with shrinkage reducing admixture into pores and OPC40C by 15% of pulverized fly ash. It might be due to impeded diffusion of chloride ions into cement paste in the vicinity of pulverized fly ash, where the pozzolanic reaction has occurred. The proposed internal curing technology can be considered a real alternative to achieve the expected performance of a high-performance concrete since a concrete with a compressive strength range from 45 to 67 MPa, density range from 2130 to 2310 kg/m3, and exceptional durability (< 2000 C) was effectively developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...