Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(4): 044906, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243366

RESUMO

As standard ASTM E2611 reveals, the normal incidence sound transmission loss measured on a small sample in an acoustic tube is not only a property of the material but also strongly dependent on boundary conditions (generally unknown) and on the way the material is mounted. This article proposes an experimental method to control the effects of the lateral boundary conditions in an acoustic tube. The main objective is to deduce the properties of a "client element" (material sample) from the measured global acoustic properties of a patchwork composed by the "client material" and a known "host support." Three patchwork configurations have to be distinguished: patchworks with and without an impervious and rigid interface between the elements and patchworks composed by elements that cannot be identified as equivalent fluids. For each of these configurations, the use of a specific method based on the Mixing Rule Method (MRM) or on the Parallel Transfer Matrix Methods (P-TMM or dP-TMM) used in reverse way is proposed. Numerical and experimental validations are proposed in acoustic tubes on a convenient configuration: a material sample surrounded by an air ring. This configuration allows reducing the material elastic-frame behavior to leave a limp-frame behavior. The proposed methods allow removing the effect of the lateral air ring host surrounding the material. For homogeneous materials, the two methods based on MRM and dP-TMM give similar good results. For non-homogeneous materials or for materials that cannot be modeled as equivalent fluids, only the method based on dP-TMM gives good results.

2.
Front Hum Neurosci ; 12: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29422841

RESUMO

Monitoring pilot's mental states is a relevant approach to mitigate human error and enhance human machine interaction. A promising brain imaging technique to perform such a continuous measure of human mental state under ecological settings is Functional Near-InfraRed Spectroscopy (fNIRS). However, to our knowledge no study has yet assessed the potential of fNIRS connectivity metrics as long as passive Brain Computer Interfaces (BCI) are concerned. Therefore, we designed an experimental scenario in a realistic simulator in which 12 pilots had to perform landings under two contrasted levels of engagement (manual vs. automated). The collected data were used to benchmark the performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance, Pearson's, and Spearman's Correlation, Spectral Coherence, and Wavelet Coherence) to discriminate these two landing conditions. Classification performance was obtained by using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them. Our findings disclosed that the connectivity features performed significantly better than the classical concentration metrics with a higher accuracy for the wavelet coherence (average: 65.3/59.9 %, min: 45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively). A maximum classification performance was obtained by combining the area under the curve with the wavelet coherence (average: 66.9/61.6 %, min: 57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively). In a general manner all connectivity measures allowed an efficient classification when computed over HbO signals. Those promising results provide methodological cues for further implementation of fNIRS-based passive BCIs.

3.
J Acoust Soc Am ; 136(2): EL90-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25096152

RESUMO

A transfer matrix method to predict absorption coefficient and transmission loss of parallel assemblies of materials which can be expressed by a 2 × 2 transfer matrix was published recently. However, the usual method based on the sum of admittances is largely used to predict also surface admittance of parallel assemblies. This paper aims to highlight differences between both methods through three examples on a parallel assembly backed by (1) a rigid wall, (2) an air cavity, and (3) an anechoic termination.

4.
J Acoust Soc Am ; 134(6): 4648, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25669277

RESUMO

The transfer matrix method (TMM) is used conventionally to predict the acoustic properties of laterally infinite homogeneous layers assembled in series to form a multilayer. In this work, a parallel assembly process of transfer matrices is used to model heterogeneous materials such as patchworks, acoustic mosaics, or a collection of acoustic elements in parallel. In this method, it is assumed that each parallel element can be modeled by a 2 × 2 transfer matrix, and no diffusion exists between elements. The resulting transfer matrix of the parallel assembly is also a 2 × 2 matrix that can be assembled in series with the classical TMM. The method is validated by comparison with finite element (FE) simulations and acoustical tube measurements on different parallel/series configurations at normal and oblique incidence. The comparisons are in terms of sound absorption coefficient and transmission loss on experimental and simulated data and published data, notably published data on a parallel array of resonators. From these comparisons, the limitations of the method are discussed. Finally, applications to three-dimensional geometries are studied, where the geometries are discretized as in a FE concept. Compared to FE simulations, the extended TMM yields similar results with a trivial computation time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...