Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670255

RESUMO

Fecal microbiota transplantation (FMT) is an innovative therapy already used in humans to treat Clostridioides difficile infections associated with massive use of antibiotics. Clinical studies are obviously the gold standard to evaluate FMT efficiency but remain limited by regulatory, ethics, and cost constraints. In the present study, an in vitro model of the human colon reproducing medically relevant perturbation of the colonic ecosystem by antibiotherapy was used to compare the efficiency of traditional FMT enema formulations and a new oral capsule in restoring gut microbiota composition and activity. Loss of microbial diversity, shift in bacterial populations, and sharp decrease in fermentation activities induced in vivo by antibiotherapy were efficiently reproduced in the in vitro model, while capturing inter-individual variability of gut microbiome. Oral capsule was as efficient as enema to decrease the number of disturbed days and bacterial load had no effect on enema performance. This study shows the relevance of human colon models as an alternative approach to in vivo assays during preclinical studies for evaluating FMT efficiency. The potential of this in vitro approach could be extended to FMT testing in the management of many digestive or extra-intestinal pathologies where gut microbial dysbiosis has been evidenced such as inflammatory bowel diseases, obesity or cancers.

2.
Appl Microbiol Biotechnol ; 104(23): 10233-10247, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33085024

RESUMO

In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.


Assuntos
Microbioma Gastrointestinal , Colo , Fezes , Humanos , RNA Ribossômico 16S/genética , Manejo de Espécimes
3.
Curr Probl Dermatol ; 48: 210-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25833647

RESUMO

A resolution of the Council of Europe in 2008 (ResAP (2008)1) helped to define requirements and criteria for the safety of tattoos and permanent make-up in order to increase the level of consumer health protection for these products. Tattoo product usage is not without risk. These products are injected into the skin and may represent a risk to human health due to possible microbiological contamination and/or contamination by the presence of hazardous substances in the products. ResAP (2008) laid the foundation for the safety of tattoo products in Europe. This has generated awareness by European Member States and has encouraged them to adapt this resolution in their own law or to use it as a model to define their own regulation on tattoos. In order, to communicate on the hazard associated with these products between Member States and the European Commission, the European RAPEX system was created; this system will be further explained in this article. Finally, some Member States have created a specific vigilance system related to the adverse effects of tattoos. In this respect, a European national example will be presented.


Assuntos
Corantes/efeitos adversos , Notificação de Abuso , Vigilância de Produtos Comercializados , Tatuagem/efeitos adversos , Qualidade de Produtos para o Consumidor , Coleta de Dados/métodos , União Europeia , Controle de Formulários e Registros , França , Humanos , Disseminação de Informação/métodos , Tatuagem/legislação & jurisprudência
4.
J Toxicol ; 2012: 959070, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22577377

RESUMO

An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA