Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 276: 126225, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749157

RESUMO

This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.


Assuntos
Biomarcadores Tumorais , Neoplasias , Análise de Célula Única , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Biomarcadores Tumorais/análise , Análise de Célula Única/métodos , Propriedades de Superfície , Nanopartículas Metálicas/química
2.
Analyst ; 147(14): 3328-3339, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762669

RESUMO

Folate receptor α (FRα) is a high affinity folate membrane receptor that is overexpressed in a wide variety of cancers. Detecting the overexpression of this receptor is important for cancer cells identification and to potentially guide the choice of treatment since several FRα-targeted drugs are currently in clinical trials. In this work, we built SERS nanotags based on core@shell Au@Ag nanoparticles labelled with resonant Raman-reporter and functionalised with a thiolated PEG linker bearing folic acid at the chain end. Using SERS mapping on single cells, we showed that the nanotags (FR-nanotags) could specifically target FRα on overexpressing HeLa cells and could measure the gradual blocking of FRα by free folic acid introduced in the media along the nanotags. With a control nanotag, we showed that the SERS response was 10-fold higher on HeLa cells when folic acid is present on the PEG linker compared to PEG chains without folic acid. Non-specific binding of the FR-nanotags was demonstrated to be low and mainly caused by the folic acid molecule at the PEG chain end. When comparing cancer cells with different expression levels of FRα, we obtained 4-fold higher SERS response on overexpressing HeLa cells compared to non-overexpressing A549 cells, allowing the discrimination of both cell lines with a high contrast. Owing to the biocompatibility of the developed nanotags, we demonstrated that measurements of FRα on live HeLa cells were also possible and gave similar results to measurements on fixed cells, indicating the versatility of the developed nanotags for detecting FRα under various experimental conditions.


Assuntos
Receptor 1 de Folato , Nanopartículas Metálicas , Receptor 1 de Folato/metabolismo , Ácido Fólico/química , Células HeLa , Humanos , Nanopartículas Metálicas/química , Prata/química
3.
Mass Spectrom Rev ; 41(3): 373-420, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33174287

RESUMO

In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.


Assuntos
Medicina Legal , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Mikrochim Acta ; 188(9): 288, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350526

RESUMO

Highly selective nanoprobes have been developed based on SERS-active Au@Ag nanoparticles protected by a PEG coating and functionalized with monoclonal antibodies against human epidermal growth factor receptor 2 (HER2). The PEG coating allows to drastically reduce unspecific interactions during incubation on tissues, while the monoclonal antibodies allow a highly specific targeting of HER2. Using the designed SERS nanoprobes combined with a spectral imaging and data weighting approach, we demonstrate the proportionality between the SERS signal and the amount of HER2 antigen on the cell membranes as measured by digital image analysis of IHC staining in microscopic breast tumors (linear fit R2 = 0.87). We also show that the level of expression of HER2 measured by SERS is significantly different between several microscopic tumor parts of the same tissue slide. Therefore, SERS is proving to be a suitable technique for the localized quantitative measurement of specific markers in breast cancerous tissues. Owing to its high multiplexing capabilities, SERS could be a future tool of choice for characterizing the molecular heterogeneity of tumors at the microscopic scale.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Nanopartículas Metálicas/química , Receptor ErbB-2/metabolismo , Análise Espectral Raman/métodos , Neoplasias da Mama/genética , Feminino , Humanos
5.
Anal Bioanal Chem ; 413(10): 2821-2830, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33125540

RESUMO

Lipids are biomolecules of crucial importance involved in critical biological functions. Yet, lipid content determination using mass spectrometry is still challenging due to their rich structural diversity. Preferential ionisation of the different lipid species in the positive or negative polarity is common, especially when using soft ionisation mass spectrometry techniques. Here, we demonstrate the potency of a dual-polarity approach using surface-assisted laser desorption/ionisation coupled to Fourier transform-ion cyclotron resonance (SALDI FT-ICR) mass spectrometry imaging (MSI) combined with Kendrick mass defect data filtering to (i) identify the lipids detected in both polarities from the same tissue section and (ii) show the complementarity of the dual-polarity data, both regarding the lipid coverage and the spatial distributions of the various lipids. For this purpose, we imaged the same mouse brain section in the positive and negative ionisation modes, on alternate pixels, in a SALDI FT-ICR MS imaging approach using gold nanoparticles (AuNPs) as dual-polarity nanosubstrates. Our study demonstrates, for the first time, the feasibility of (i) a dual-polarity SALDI-MSI approach on the same tissue section, (ii) using AuNPs as nanosubstrates combined with a FT-ICR mass analyser and (iii) the Kendrick mass defect data filtering applied to SALDI-MSI data. In particular, we show the complementarity in the lipids detected both in a given ionisation mode and in the two different ionisation modes. Graphical abstract.


Assuntos
Química Encefálica , Lipídeos/análise , Animais , Análise de Fourier , Ouro/química , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Camundongos
6.
Anal Bioanal Chem ; 412(28): 7739-7755, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32910264

RESUMO

Surface-enhanced Raman scattering (SERS) nanoprobes based on Au@Ag core@shell nanoparticles coated with poly(allylamine) were functionalized with small targeting molecules to evaluate simultaneously the level of expression of two cancer-related markers, both in cells and in tissues. The Au@Ag nanoparticles provide a high SERS signal enhancement in the visible range when combined with resonant Raman-active molecules. The poly(allylamine) coating plays a dual key role in (i) protecting the metal surface against the complex biological medium, leading to a stable signal of the Raman-active molecules, and (ii) enabling specific biofunctionalization through its amine functions. Using small targeting molecules linked to the polymer coating, two different nanoprobes (duplex approach) were designed. Each was able to specifically target a particular cancer-related marker: folate receptors (FRs) and sialic acid (SA). We demonstrate that the level of expression of these targeted markers can be evaluated following the SERS signal of the probes incubated on cells or tissues. The potential overexpression of folate receptors and of sialic acid was evaluated and measured in breast and ovarian cancerous tissue sections. In addition, FR and/or SA overexpression in the tumor region can be visualized with high contrast with respect to the healthy region and with high spatial accuracy consistent with histology by SERS imaging of the nanoprobe signal. Owing to the unique spectral signature of the designed nanoprobes, this approach offers an efficient tool for the spatially resolved, in situ measurement of the expression level of several cancer-related markers in tumors at the same time.Graphical abstract.


Assuntos
Biomarcadores Tumorais/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Sondas Moleculares/química , Poliaminas/química , Prata/química , Análise Espectral Raman/métodos , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...