Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895999

RESUMO

Metal-porphyrins are studied intensively due their potential applications, deriving from the variety of electronic and chemical properties, tunable by selecting metal centers and functional groups. Metalation, de- and trans-metalation processes are fundamental in this sense to investigate both the synthesis and the stability of these molecular building blocks. More specifically, Pd coordination in tetrapyrroles revealed to be potentially interesting in the fields of cancer therapy, drug delivery and light harvesting. Thus, we focused on the stability of palladium tetraphenyl porphyrins (PdTPPs) on a copper surface by means of combined spectroscopy and microscopy approaches. We find that PdTPPs undergo coverage-dependent trans-metalation accompanied by steric rearrangements already at room temperature, and fully trans-metalate to CuTPPs upon mild annealing. Side reactions such as (cyclo)-dehydrogenation and structural reorganization affect the molecular layer, with Pd-Cu alloying and segregation occurring at higher temperature. Instead, oxygen passivation of the Cu support prevents the metal-involving reactions, thus preserving the layer and increasing the chemical and temperature stability of the Pd porphyrins.

2.
ACS Omega ; 9(16): 17977-17988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680339

RESUMO

Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.

3.
Nano Lett ; 24(6): 1923-1930, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315034

RESUMO

The bottom-up synthesis of carbon-based nanomaterials directly on semiconductor surfaces allows for the decoupling of their electronic and magnetic properties from the substrates. However, the typically reduced reactivity of such nonmetallic surfaces adversely affects the course of these reactions. Here, we achieve a high polymerization yield of halogenated polyphenyl molecular building blocks on the semiconducting TiO2(110) surface via concomitant surface decoration with cobalt atoms, which catalyze the Ullmann coupling reaction. Specifically, cobalt atoms trigger the debromination of 4,4″-dibromo-p-terphenyl molecules on TiO2(110) and mediate the formation of an intermediate organometallic phase already at room temperature (RT). As the debromination temperature is drastically reduced, homocoupling and polymerization readily proceed, preventing presursor desorption from the substrate and entailing a drastic increase of the poly-para-phenylene polymerization yield. The general efficacy of this mechanism is shown with an iodinated terphenyl derivative, which exhibits similar dehalogenation and reaction yield.

4.
Nano Lett ; 23(23): 11211-11218, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029285

RESUMO

The two-dimensional electron system (2DES) located at the surface of strontium titanate (STO) and at several other STO-based interfaces has been an established platform for the study of novel physical phenomena since its discovery. Here we report how the interfacing of STO and tetracyanoquinodimethane (TCNQ) results in a charge transfer that depletes the number of free carriers at the STO surface, with a strong impact on its electronic structure. Our study paves the way for efficient tuning of the electronic properties, which promises novel applications in the framework of oxide/organic-based electronics.

5.
Phys Chem Chem Phys ; 25(39): 26779-26786, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37781890

RESUMO

A precise understanding, at the molecular level, of the massive substrate → adsorbate charge transfer at the NiTPP/Cu(100) interface has been gained through the application of elementary symmetry arguments to the structural determination of the NiTPP adsorption site by photoelectron diffraction (PED) measurements and Amsterdam density functional calculations of the free D4h NiTPP electronic structure. In particular, the PED analysis precisely determines that, among the diverse NiTPP chemisorption sites herein considered (fourfold hollow, atop, and bridge), the fourfold hollow one is the most favorable, with the Ni atom located at 1.93 Å from the surface and at an internuclear distance of 2.66 Å from the nearest-neighbors of the substrate. The use of elementary symmetry considerations enabled us to provide a convincing modeling of the NiTPP-Cu(100) anchoring configuration and an atomistic view of the previously revealed interfacial charge transfer through the unambiguous identification of the adsorbate π* and σ* low-lying virtual orbitals, of the substrate surface atoms, and of the linear combinations of the Cu 4s atomic orbitals involved in the substrate → adsorbate charge transfer. In addition, the same considerations revealed that the experimentally reported Ni(II) → Ni(I) reduction at the interface corresponds to the fingerprint of the chemisorption site of the NiTPP on Cu(100).

6.
J Phys Chem C Nanomater Interfaces ; 127(24): 11591-11599, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377501

RESUMO

The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI), has been studied on Au(111). Intermolecular hydrogen bonding determines the formation of highly organized linear structures where surface chirality, resulting from the 2D confinement of the centrosymmetric molecules, is observed. Moreover, the structural features of the BDAI molecule lead to the formation of two differentiated arrangements with extended brick-wall and herringbone packing. A comprehensive experimental study that combines scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory theoretical calculations has been performed to fully characterize the 2D hydrogen-bonded domains and the on-surface thermal stability of the physisorbed material.

7.
Chem Commun (Camb) ; 59(20): 2954-2957, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36804728

RESUMO

Two different metal-organic frameworks with either a honeycomb or Kagome structure were grown on Cu(111) using para-aminophenol molecules and native surface adatoms. Although both frameworks are made up from the same chemical species, they are structurally different emphasizing the critical role being played by the reaction conditions during their growth. This work highlights the importance of the balance between thermodynamics and kinetics in the final structure of surface-supported metal-organic networks.

8.
Nanoscale ; 14(43): 16256-16261, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285832

RESUMO

After the discovery of graphene, many other 2D materials have been predicted theoretically and successfully prepared. In this context, single-sheet black phosphorus - phosphorene - is emerging as a viable contender in the field of (2D) semiconductors. Phosphorene offers high carrier mobility and an anisotropic structure that gives rise to a modulation of physical and chemical properties. This opens the way to many novel and fascinating applications related to field-effect transistors and optoelectronic devices. In previous studies, a single layer of blue phosphorene intermixed with Au atoms was grown using purified black phosphorus as a precursor. Starting from the observation that phosphorus vapor mainly consists of P clusters, in this work we aimed at obtaining blue phosphorus using much less expensive purified red phosphorus as an evaporant. By means of microscopy, spectroscopy and diffraction experiments, we show that black or red phosphorus deposition on Au(111) substrates yields the same blue phosphorus film.

9.
Phys Chem Chem Phys ; 24(37): 22960-22970, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125248

RESUMO

Chemoselective reduction of nitro groups in multifunctional nitroaromatics is a challenging catalytic process with high interest due to the importance of the resulting anilines for the chemical industry. Molecular-level understanding of the ways by which adsorption geometry of nitroaromatics influence their affinity toward nitro reduction will enable the development of highly selective reactions. Herein, taking advantage of the well-ordered self-assembly of para- and ortho-nitrothiophenol (p-NTP and o-NTP, respectively) monolayers on Au(111), we examined the correlation between adsorption geometry and nitro reduction affinity. The anchoring geometry of NTPs and their nitro reduction affinity were determined by conducting polarized X-ray absorption spectroscopy while the influence of NTPs' adsorption geometry on the interaction with the Au surface was analyzed by density functional theory (DFT) calculations. Exposure of surface anchored p-NTPs to reducing conditions led to their reorientation from a tilt angle of 52° to 25°, which enabled strong interactions between the π system of the molecules and the Au surface. Direct correlation was identified between the surface proximity of the nitro group, its parallel position to the surface and the resulting reduction yield. The asymmetric structure of o-NTP led to a tilted adsorption geometry in which the nitro group was rotated away from the plane of the aromatic ring and therefore was positioned parallel and in high proximity to the Au surface. This positioning led to surface-bonding that involved the oxygen atoms of o-NTP. The higher surface proximity and stronger surface interactions of the nitro group in o-NTP enabled nitro reduction already at 180 °C, while in p-NTP nitro reduction was achieved only at 230 °C, due to the longer distance between the NO2 group and the Au surface that led to weaker adsorbate-surface interactions. Thus, parallel positioning of the nitro group and high surface proximity were found as essential descriptors for nitro reduction affinity in both p-NTP and o-NTP on the Au surface. These findings provide explicit guidelines for tuning the reactant and surface properties in order to control the reactant's adsorption geometry for selective nitro reduction in multifunctional nitroaromatics.

10.
Nanoscale ; 14(36): 13166-13177, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36039896

RESUMO

With the aim to identify charge transfer channels underlying device development and operation, X-Ray Photoelectron Spectroscopy (XPS), Near-Edge X-Ray Absorption Fine Structure (NEXAFS), and Resonant Photoelectron Spectroscopy (ResPES) have been employed to characterize a novel heterointerface obtained by the controlled evaporation of a Nickel Phthalocyanine (NiPc) monolayer on a single layer of Graphene (Gr) on SiC substrate. Indeed, the Gr-NiPc interface could be a promising candidate for different applications in the field of photonics, optoelectronics, and sensing, provided that clear information on the charge transfer mechanisms at the Gr-NiPc interface can be obtained. The analysis of the spectroscopic data has shown the effective functionalization and the horizontally-flat disposition of the NiPc complexes over the Gr layer. With this geometry, the main intermolecular interaction experienced by the NiPc species is the coupling with the Gr substrate, through π-symmetry orbitals, as revealed by the different behaviour of the valence band photoemission at resonance with the N K-edge and Ni L3-edge. These results have been supported by the analysis of density functional theory (DFT) calculations, that allowed for a rationalization of the experimental data, showing that charge transfer at the interface occurs from the doubly degenerate eg LUMO orbital, involving mainly N and C (pyrrole ring) pz states, to the holes in the p-doped graphene layer.

11.
J Phys Condens Matter ; 34(27)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354128

RESUMO

Due to its biocompatibility, TiO2is a relevant material for the study of bio-interfaces. Its electronic and chemical properties are influenced by defects, which mainly consist of oxygen vacancies or adsorbed OH groups and which affect, consequently, also the interaction with biological molecules. Here we report on an x-ray photoemission spectroscopy and near edge adsorption fine structure study of glutamic acid (Glu) adsorption on the rutile TiO2(110) surface, either clean or partially hydroxylated. We show that Glu anchors to the surface through a carboxylate group and that the final adsorption state is influenced by the presence of hydroxyl groups on the surface prior to Glu deposition. Indeed, molecules adsorb both in the anionic and in the zwitterionic form, the former species being favored on the hydroxylated substrate.


Assuntos
Ácido Glutâmico , Adsorção , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Titânio
12.
Angew Chem Int Ed Engl ; 61(20): e202201916, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35267236

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.


Assuntos
Níquel , Óxido Nítrico , Cobre , Compostos Férricos , Metais , Oxirredução
13.
Angew Chem Weinheim Bergstr Ger ; 134(20): e202201916, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38505699

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.

14.
Small ; 17(50): e2104779, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643036

RESUMO

Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/transport properties can be controlled simultaneously by independent stimuli.


Assuntos
Porfirinas , Cobre , Metais , Níquel , Temperatura
15.
Angew Chem Int Ed Engl ; 60(49): 25988-25993, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591358

RESUMO

Self-metalation is a promising route to include a single metal atom in a tetrapyrrolic macrocycle in organic frameworks supported by metal surfaces. The molecule-surface interaction may provide the charge transfer and the geometric distortion of the molecular plane necessary for metal inclusion. However, at a metal surface the presence of an activation barrier can represent an obstacle that cannot be compensated by a higher substrate temperature without affecting the layer integrity. The formation of the intermediate state can be facilitated in some cases by oxygen pre-adsorption at the supporting metal surface, like in the case of 2H-TPP/Pd(100). In such cases, the activation barrier can be overcome by mild annealing, yielding the formation of desorbing products and of the metalated tetrapyrrole. We show here that the self-metalation of 2H-TPP at the Pd(100) surface can be promoted already at room temperature by the presence of an oxygen gas phase at close-to-ambient conditions via an Eley-Rideal mechanism.

16.
Small ; 17(41): e2103044, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34477325

RESUMO

On-surface Ullmann coupling is an established method for the synthesis of 1D and 2D organic structures. A key limitation to obtaining ordered polymers is the uncertainty in the final structure for coupling via random diffusion of reactants over the substrate, which leads to polymorphism and defects. Here, a topotactic polymerization on Cu(110) in a series of differently-halogenated para-phenylenes is identified, where the self-assembled organometallic (OM) reactants of diiodobenzene couple directly into a single, deterministic product, whereas the other precursors follow a diffusion driven reaction. The topotactic mechanism is the result of the structure of the iodine on Cu(110), which controls the orientation of the OM reactants and intermediates to be the same as the final polymer chains. Temperature-programmed X-ray photoelectron spectroscopy and kinetic modeling reflect the differences in the polymerization regimes, and the effects of the OM chain alignments and halogens are disentangled by Nudged Elastic Band calculations. It is found that the repulsion or attraction between chains and halogens drive the polymerization to be either diffusive or topotactic. These results provide detailed insights into on-surface reaction mechanisms and prove the possibility of harnessing topotactic reactions in surface-confined Ullmann polymerization.

17.
Langmuir ; 37(33): 10029-10035, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370475

RESUMO

Adsorption of chiral molecules on heterogeneous catalysts is a simple approach for inducing an asymmetric environment to enable enantioselective reactivity. Although the concept of chiral induction is straightforward, its practical utilization is far from simple, and only a few examples toward the successful chiral induction by surface anchoring of asymmetric modifiers have been demonstrated so far. Elucidating the factors that lead to successful chiral induction is therefore a crucial step for understanding the mechanism by which chirality is transferred. Herein, we identify the adsorption geometry of OH-functionalized N-heterocyclic carbenes (NHCs), which are chemical analogues to chiral modifiers that successfully promoted α-arylation reactions once anchored on Pd nanoparticles. Polarized near-edge X-ray absorption fine structure (NEXAFS) measurements on Pd(111) revealed that NHCs that were associated with low enantioselectivity were characterized with a well-ordered structure, in which the imidazole ring was vertically positioned and the OH-functionalized side arms were flat-lying. OH-functionalized NHCs that were associated with high enantioselectivity revealed a disordered/flexible adsorption geometry, which potentially enabled better interaction between the OH group and the prochiral reactant.

18.
Chemistry ; 27(10): 3526-3535, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33264485

RESUMO

Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.

19.
J Phys Chem C Nanomater Interfaces ; 124(36): 19655-19665, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33163138

RESUMO

We present a comparative study of the room-temperature adsorption of p-aminophenol (p-AP) molecules on three metal surfaces, namely Cu(110), Cu(111) and Pt(111). We show that the chemical nature and the structural symmetry of the substrate control the activation of the terminal molecular groups, which result in different arrangements of the interfacial molecular layer. To this aim, we have used in-situ STM images combined with synchrotron radiation high resolution XPS and NEXAFS spectra, and the results were simulated by DFT calculations. On copper, the interaction between the molecules and the surface is weaker on the (111) surface crystal plane than on the (110) one, favouring molecular diffusion and leading to larger ordered domains. We demonstrate that the p-AP molecule undergoes spontaneous dehydrogenation of the alcohol group to form phenoxy species on all the studied surfaces, however, this process is not complete on the less reactive surface, Cu(111). The Pt(111) surface exhibits stronger molecule-surface interaction, inducing a short-range ordered molecular arrangement that increases overtime. In addition, on the highly reactive Pt(111) surface other chemical processes are evidenced, such as the dehydrogenation of the amine group.

20.
Nanotechnology ; 31(27): 275708, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32235041

RESUMO

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...