Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6805, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514714

RESUMO

The degradation in water of furosemide (FUR), a widely used diuretic drug, was herein reported. The method entails an integrated approach based on the hybridisation of hydrodynamic cavitation (HC) with electrical discharge (ED) plasma technology. This dynamic duo could increase the production of oxidising compounds in water, in particular hydroxyl radicals (OH radicals), by triggering the rapid homolytic decomposition of water molecules and avoiding the addition of external oxidants. This study clearly emphasises the effectiveness of an integrated approach to improve the degradation of pollutants in wastewater originating from active pharmaceutical ingredients (APIs). The results of HC/ED-assisted FUR degradation in the presence of radical scavengers highlight the predominant role of the radical oxidation mechanism at the gas-liquid interface of the cavitation bubble during HC/ED treatment. A comparative analysis of the three technologies-HC alone, HC/ED and UV alone-emphasised the promising potential of hybrid HC/ED as a scalable industrial technology. This is demonstrated by the higher degradation rates (100%, 10 min) when treating large volumes (5L) of wastewater contaminated with FUR (50 mg/L), even in the presence of other APIs.

2.
Environ Pollut ; 342: 123041, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042465

RESUMO

Wastewater decontamination in pharmaceuticals is crucial to prevent environmental and health risks from API residues and other contaminants. Advanced oxidation processes (AOPs) combined with cavitational treatments offer effective solutions. Challenges include designing reactors on a large scale and monitoring the effectiveness and synergies of the hybrid technology. In the present work, pilot-scale treatment of a real high COD (485 g/L) pharmaceutical wastewater (PW) was investigated using hydrodynamic cavitation (HC) operated individually at 330 L/h or in combination with oxidants and electrical discharge (ED) with cold plasma (15 kV and 48 kHz). The first approach consisted of PW cavitational treatment alone of 7 L of 1:100 diluted PW at a HC-induced pressure of 60 bar and a flow rate of 330 L/h. However, this strategy did not provide satisfactory results for COD (∼15% less), and only when HC treatment was extended to more than 30 min in a recirculation mode, encouraging results were obtained (∼45% COD reduction). Consequently, a hybrid approach combining HC with ED-cold plasma was chosen to treat this high-COD PW. Aiming to establish an efficient flow-through hybrid process, after optimising all cavitation and electrical discharge parameters (45 bar HC pressure and 10 kHz ED frequency), the best COD abatement of ∼50 % was recorded with a 1:50 diluted PW. However, a subsequent adsorption step over activated carbon was required to achieve an almost quantitative COD reduction (95%+). Our integrated physicochemical process proved to be extremely efficient in treating high-COD industrial wastewater and resulted in a remarkable reduction of the COD value. In addition, the residual surfactants content in the PW were also drastically reduced (98%+) when a small amount of oxidants was added in the hybrid HC/ED treatment.


Assuntos
Gases em Plasma , Águas Residuárias , Adsorção , Indústria Farmacêutica , Oxidantes , Eliminação de Resíduos Líquidos/métodos
3.
Ultrason Sonochem ; 95: 106388, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011519

RESUMO

In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10-6 mol L-1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10-6 S cm-1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10-3 mol H2O2 L-1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10-3 molH2O2L-1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.


Assuntos
Água Potável , Metronidazol , Metronidazol/química , Peróxido de Hidrogênio/química , Hidrodinâmica , Antibacterianos , Oxidantes
4.
Molecules ; 27(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684534

RESUMO

Lignin is a fascinating aromatic biopolymer with high valorization potentiality. Besides its extensive value in the biorefinery context, as a renewable source of aromatics lignin is currently under evaluation for its huge potential in biomedical applications. Besides the specific antioxidant and antimicrobial activities of lignin, that depend on its source and isolation procedure, remarkable progress has been made, over the last five years, in the isolation, functionalization and modification of lignin and lignin-derived compounds to use as carriers for biologically active substances. The aim of this review is to summarize the current state of the art in the field of lignin-based carrier systems, highlighting the most important results. Furthermore, the possibilities and constraints related to the physico-chemical properties of the lignin source will be reviewed herein as well as the modifications and processing required to make lignin suitable for the loading and release of active compounds.


Assuntos
Excipientes , Lignina , Antioxidantes/farmacologia , Lignina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...