Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4562, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633174

RESUMO

Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6-23.6 °C; 0.8 °C d-1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6-3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.


Assuntos
Adaptação Biológica , Anfípodes/fisiologia , Comportamento Animal , Regulação da Temperatura Corporal , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Aclimatação , Animais , Geografia , Especificidade da Espécie , Estresse Fisiológico
2.
PeerJ ; 4: e2657, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27896024

RESUMO

Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase) and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate). Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming) was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

3.
Zootaxa ; 3838(5): 518-44, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25081795

RESUMO

A new amphipod species of the endemic fauna of Lake Baikal (East Siberia, Russia), Eulimnogammarus messerschmidtii sp. n., from the littoral zone of the northern part of the lake is described. The species is characterized by the presence of a group of spines with dense setae on the last 4 body segments. The basal peduncular segment of antenna 1 bears bunches of dense setae without spines, uropods 3 are covered by dense simple setae without plumose setae and the outer ramus has a second small article. The body length of sampled specimens ranges from 7.5 to 18 mm. Population analysis at one of the sampling points revealed a spring-summer reproduction period for this species. This species was previously erroneously identified as E. cyanoides. E. cyanoides is here redescribed in details based on the lectotype. The differences between E. messerschmidtii sp. n., E. cyanoides and other closely related Eulimnogammarus species are described. The taxonomy of the genus Eulimnogammarus is discussed.


Assuntos
Anfípodes/classificação , Anfípodes/anatomia & histologia , Anfípodes/crescimento & desenvolvimento , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Ecossistema , Feminino , Lagos , Masculino , Tamanho do Órgão , Sibéria
4.
Artigo em Inglês | MEDLINE | ID: mdl-24076104

RESUMO

Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge.


Assuntos
Gastrópodes/citologia , Gastrópodes/metabolismo , Resposta ao Choque Térmico , Lagos , Animais , Gastrópodes/enzimologia , Gastrópodes/fisiologia , Federação Russa , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...