Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240134

RESUMO

The continuous emergence of bacterial resistance alters the activities of different antibiotic families and requires appropriate strategies to solve therapeutic impasses. Medicinal plants are an attractive source for researching alternative and original therapeutic molecules. In this study, the fractionation of natural extracts from A. senegal and the determination of antibacterial activities are associated with molecular networking and tandem mass spectrometry (MS/MS) data used to characterize active molecule(s). The activities of the combinations, which included various fractions plus an antibiotic, were investigated using the "chessboard" test. Bio-guided fractionation allowed the authors to obtain individually active or synergistic fractions with chloramphenicol activity. An LC-MS/MS analysis of the fraction of interest and molecular array reorganization showed that most identified compounds are Budmunchiamines (macrocyclic alkaloids). This study describes an interesting source of bioactive secondary metabolites structurally related to Budmunchiamines that are able to rejuvenate a significant chloramphenicol activity in strains that produce an AcrB efflux pump. They will pave the way for researching new active molecules for restoring the activity of antibiotics that are substrates of efflux pumps in enterobacterial-resistant strains.


Assuntos
Acacia , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida , Senegal , Antibacterianos/química , Cloranfenicol/farmacologia , Cloranfenicol/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
J Antimicrob Chemother ; 78(6): 1532-1542, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37104818

RESUMO

OBJECTIVES: The emergence of MDR strains is a public health problem in the management of associated infections. Several resistance mechanisms are present, and antibiotic efflux is often found at the same time as enzyme resistance and/or target mutations. However, in the laboratory routinely, only the latter two are identified and the prevalence of antibiotic expulsion is underestimated, causing a misinterpretation of the bacterial resistance phenotype. The development of a diagnostic system to quantify the efflux routinely would thus improve the management of patients. METHODS: A quantitative technique based on detection of clinically used fluoroquinolones was investigated in Enterobacteriaceae clinical strains with a high or basal efflux activity. The detail of efflux involvement was studied from MIC determination and antibiotic accumulation inside bacteria. WGS was carried out on selected strains to determine the genetic background associated with efflux expression. RESULTS: Only 1 Klebsiella pneumoniae isolate exhibited a lack of efflux whereas 13 isolates had a basal efflux and 8 presented efflux pump overexpression. The antibiotic accumulation evidenced the efficacy of the efflux mechanism in strains, and the contribution of dynamic expulsion versus target mutations in fluoroquinolone susceptibility. CONCLUSIONS: We confirmed that phenylalanine arginine ß-naphthylamide is not a reliable marker of efflux due to the affinity of the AcrB efflux pump for different substrates. We have developed an accumulation test that can be used efficiently on clinical isolates collected by the biological laboratory. The experimental conditions and protocols ensure a robust assay that with improvements in practice, expertise and equipment could be transferred to the hospital laboratory to diagnose the contribution of efflux in Gram-negative bacteria.


Assuntos
Enterobacteriaceae , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Enterobacteriaceae/genética , Antibacterianos/farmacologia , Mutação , Transporte Biológico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
3.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675027

RESUMO

Antibiotic resistance continues to evolve and spread beyond all boundaries, resulting in an increase in morbidity and mortality for non-curable infectious diseases. Due to the failure of conventional antimicrobial therapy and the lack of introduction of a novel class of antibiotics, novel strategies have recently emerged to combat these multidrug-resistant infectious microorganisms. In this review, we highlight the development of effective antibiotic combinations and of antibiotics with non-antibiotic activity-enhancing compounds to address the widespread emergence of antibiotic-resistant strains.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia
4.
Commun Biol ; 5(1): 1062, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203030

RESUMO

Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps.


Assuntos
Proteínas de Escherichia coli , Fluoroquinolonas , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
5.
Commun Biol ; 5(1): 1059, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198902

RESUMO

Gram-negative porins are the main entry for small hydrophilic molecules. We studied translocation of structurally related cephalosporins, ceftazidime (CAZ), cefotaxime (CTX) and cefepime (FEP). CAZ is highly active on E. coli producing OmpF (Outer membrane protein F) but less efficient on cells expressing OmpC (Outer membrane protein C), whereas FEP and CTX kill bacteria regardless of the porin expressed. This matches with the different capacity of CAZ and FEP to accumulate into bacterial cells as quantified by LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry). Furthermore, porin reconstitution into planar lipid bilayer and zero current assays suggest permeation of ≈1,000 molecules of CAZ per sec and per channel through OmpF versus ≈500 through OmpC. Here, the instant killing is directly correlated to internal drug concentration. We propose that the net negative charge of CAZ represents a key advantage for permeation through OmpF porins that are less cation-selective than OmpC. These data could explain the decreased susceptibility to some cephalosporins of enterobacteria that exclusively express OmpC porins.


Assuntos
Cefalosporinas , Enterobacteriaceae , Cefepima/metabolismo , Cefotaxima/metabolismo , Ceftazidima , Cefalosporinas/farmacologia , Cromatografia Líquida , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Monobactamas/metabolismo , Porinas/química , Porinas/metabolismo , Espectrometria de Massas em Tandem
6.
Adv Healthc Mater ; 11(5): e2101180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34614289

RESUMO

When searching for new antibiotics against Gram-negative bacterial infections, a better understanding of the permeability across the cell envelope and tools to discriminate high from low bacterial bioavailability compounds are urgently needed. Inspired by the phospholipid vesicle-based permeation assay (PVPA), which is designed to predict non-facilitated permeation across phospholipid membranes, outer membrane vesicles (OMVs) of Escherichia coli either enriched or deficient of porins are employed to coat filter supports for predicting drug uptake across the complex cell envelope. OMVs and the obtained in vitro model are structurally and functionally characterized using cryo-TEM, SEM, CLSM, SAXS, and light scattering techniques. In vitro permeability, obtained from the membrane model for a set of nine antibiotics, correlates with reported in bacterio accumulation data and allows to discriminate high from low accumulating antibiotics. In contrast, the correlation of the same data set generated by liposome-based comparator membranes is poor. This better correlation of the OMV-derived membranes points to the importance of hydrophilic membrane components, such as lipopolysaccharides and porins, since those features are lacking in liposomal comparator membranes. This approach can offer in the future a high throughput screening tool with high predictive capacity or can help to identify compound- and bacteria-specific passive uptake pathways.


Assuntos
Bactérias Gram-Negativas , Porinas , Disponibilidade Biológica , Porinas/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Sci Rep ; 11(1): 4280, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608597

RESUMO

Producing industrially significant compounds with more environmentally friendly represents a challenging task. The large-scale production of an exogenous molecule in a host microfactory can quickly cause toxic effects, forcing the cell to inhibit production to survive. The key point to counter these toxic effects is to promote a gain of tolerance in the host, for instance, by inducing a constant flux of the neo-synthetized compound out of the producing cells. Efflux pumps are membrane proteins that constitute the most powerful mechanism to release molecules out of cells. We propose here a new biological model, Deinococcus geothermalis, organism known for its ability to survive hostile environment; with the aim of coupling the promising industrial potential of this species with that of heterologous efflux pumps to promote engineering tolerance. In this study, clones of D. geothermalis containing various genes encoding chromosomal heterologous efflux pumps were generated. Resistant recombinants were selected using antibiotic susceptibility tests to screen promising candidates. We then developed a method to determine the efflux efficiency of the best candidate, which contains the gene encoding the MdfA of Salmonella enterica serovar Choleraesuis. We observe 1.6 times more compound in the external medium of the hit recombinant than that of the WT at early incubation time. The data presented here will contribute to better understanding of the parameters required for efficient production in D. geothermalis.


Assuntos
Biotecnologia , Deinococcus/genética , Deinococcus/metabolismo , Tolerância a Medicamentos , Engenharia Genética , Proteínas de Membrana Transportadoras/genética , Antibacterianos/farmacologia , Clonagem Molecular , Deinococcus/efeitos dos fármacos , Tolerância a Medicamentos/genética , Fermentação , Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Proteínas de Membrana Transportadoras/metabolismo
8.
Microorganisms ; 8(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492979

RESUMO

The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.

9.
Commun Biol ; 3(1): 198, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346058

RESUMO

With the spreading of antibiotic resistance, the translocation of antibiotics through bacterial envelopes is crucial for their antibacterial activity. In Gram-negative bacteria, the interplay between membrane permeability and drug efflux pumps must be investigated as a whole. Here, we quantified the intracellular accumulation of a series of fluoroquinolones in population and in individual cells of Escherichia coli according to the expression of the AcrB efflux transporter. Computational results supported the accumulation levels measured experimentally and highlighted how fluoroquinolones side chains interact with specific residues of the distal pocket of the AcrB tight monomer during recognition and binding steps.


Assuntos
Antibacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fluoroquinolonas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Transporte Biológico , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluoroquinolonas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ligação Proteica , Espectrometria de Fluorescência , Relação Estrutura-Atividade
10.
Nat Rev Microbiol ; 18(3): 164-176, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31792365

RESUMO

Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. The relatively slow porin-mediated passive uptake across the outer membrane and active efflux via efflux pumps in the inner membrane creates a permeability barrier. The synergistic action of outer membrane permeability, efflux pump activities and enzymatic degradation efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this Review, we discuss recent advances in our understanding of the molecular and functional roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Enterobacteriaceae/enzimologia , Enterobacteriaceae/metabolismo , Porinas/metabolismo , Antibacterianos/metabolismo , Transporte Biológico , Farmacorresistência Bacteriana , Enterobacteriaceae/efeitos dos fármacos
11.
Life Sci Alliance ; 2(1): e201800242, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30620010

RESUMO

Small molecule accumulation in Gram-negative bacteria is a key challenge to discover novel antibiotics, because of their two membranes and efflux pumps expelling toxic molecules. An approach to overcome this challenge is to hijack uptake pathways so that bacterial transporters shuttle the antibiotic to the cytoplasm. Here, we have characterized maltodextrin-fluorophore conjugates that can pass through both the outer and inner membranes mediated by components of the Escherichia coli maltose regulon. Single-channel electrophysiology recording demonstrated that the compounds permeate across the LamB channel leading to accumulation in the periplasm. We have also demonstrated that a maltotriose conjugate distributes into both the periplasm and cytoplasm. In the cytoplasm, the molecule activates the maltose regulon and triggers the expression of maltose binding protein in the periplasmic space indicating that the complete maltose entry pathway is induced. This maltotriose conjugate can (i) reach the periplasmic and cytoplasmic compartments to significant internal concentrations and (ii) auto-induce its own entry pathway via the activation of the maltose regulon, representing an interesting prototype to deliver molecules to the cytoplasm of Gram-negative bacteria.


Assuntos
Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trissacarídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular , Farmacorresistência Bacteriana Múltipla , Técnicas de Inativação de Genes , Maltose/genética , Maltose/metabolismo , Proteínas Ligantes de Maltose/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Óperon/genética , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Perileno/química , Polissacarídeos/metabolismo , Porinas/genética , Porinas/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Regulon/genética , Trissacarídeos/química
12.
J Antimicrob Chemother ; 74(1): 58-65, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325444

RESUMO

Background: In Gram-negative bacteria, passing through the double membrane barrier to reach the inhibitory concentration inside the bacterium is a pivotal step for antibiotic activity. Spectrofluorimetry has been developed to follow fluoroquinolone accumulation inside bacteria using intrinsic bacterial fluorescence as an internal standard. However, adaptation for non-fluorescent antibiotics is needed; quantitative methods based on MS offer the possibility of expanding the detection range obtained by spectrofluorimetry. Objectives: To validate, with spectrofluorimetry, the use of MS to measure antibiotic accumulation in cells and to determine the relationship between antibiotic concentrations and the amount of intrabacterial accumulation in different efflux backgrounds on the same batch of molecules. Methods: Spectrofluorimetry was performed in parallel with MS on the same samples to measure the ciprofloxacin and fleroxacin accumulation in cells expressing various efflux pump levels. A microplate protocol was set up to determine the antibiotic accumulation as a function of external antibiotic concentrations. Results: A correlation existed between the data obtained with spectrofluorimetry and MS, whatever the efflux pump or tested antibiotic. The results highlighted different dynamics of uptake between ciprofloxacin and fleroxacin as well as the relationship between the level of efflux activity and antibiotic accumulation. Conclusions: We have developed a microplate protocol and cross-validated two complementary methods: spectrofluorimetry, which contains a reliable internal standard; and MS, which allows detection of low antibiotic amounts. These assays allow study of the dose effect and the efflux impact on the intrabacterial accumulation of antibiotics.


Assuntos
Antibacterianos/análise , Ciprofloxacina/análise , Citoplasma/química , Fleroxacino/análise , Bactérias Gram-Negativas/química , Espectrometria de Massas , Espectrometria de Fluorescência , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Fleroxacino/farmacocinética
13.
Nat Protoc ; 13(6): 1348-1361, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773906

RESUMO

The efficacy of antibacterial molecules depends on their capacity to reach inhibitory concentrations in the vicinity of their target. This is particularly challenging for drugs directed against Gram-negative bacteria, which have a complex envelope comprising two membranes and efflux pumps. Precise determination of the bacterial drug content is an essential prerequisite for drug development. Here we describe three approaches that have been developed in our laboratories to quantify drugs accumulated in intact cells by spectrofluorimetry, microspectrofluorimetry, and kinetics microspectrofluorimetry (KMSF). These different procedures provide complementary results that highlight the contribution of membrane-associated mechanisms, including influx through the outer membrane (OM) and efflux, and the importance of the physicochemical properties of the transported drugs for the intracellular concentration of a given antibiotic in a given bacterial population. The three key stages of this protocol are preparation of the bacterial strains in the presence of the antibiotic; preparation of the whole-cell lysates (WCLs) and fluorescence readings; and data analysis, including normalization and quantitation of the intracellular antibiotic fluorescence relative to the internal standard and the antibiotic standard curve, respectively. Fluorimetry is limited to naturally fluorescent or labeled compounds, but in contrast to existing alternative methods such as mass spectrometry, it uniquely allows single-cell analysis. From culture growth to data analysis, the protocol described here takes 5 d.


Assuntos
Antibacterianos/análise , Bactérias/química , Espectrometria de Fluorescência/métodos , Antibacterianos/farmacocinética , Membranas/metabolismo , Análise de Célula Única/métodos
14.
Res Microbiol ; 169(7-8): 432-441, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29208490

RESUMO

To understand antibiotic resistance in Gram-negative bacteria, a key point is to investigate antibiotic accumulation, which is defined by influx and efflux. Several methods exist to evaluate membrane permeability and efflux pump activity, but they present disadvantages and limitations. An optimized spectrofluorimetric method using intrinsic tryptophan fluorescence as an internal standard, as well as a complementary microfluorimetric assay following time-course accumulation in intact individual cells, have been developed. Comparing the latter population and single cell approaches can lead to an understanding of phenotypic heterogeneity within a population. The two methodologies lead to determination of parameters, concentration, accumulation rates and localization that contribute to emerging concepts (RTC2T, SICAR) with the aim of identifying and detailing antibiotic chemotypes involved in influx/efflux.


Assuntos
Antibacterianos/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Fluorescência , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/genética
15.
Sci Rep ; 7(1): 9821, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851902

RESUMO

Bacterial multidrug resistance is a worrying health issue. In Gram-negative antibacterial research, the challenge is to define the antibiotic permeation across the membranes. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is a pivotal step for antibacterial molecules. A spectrofluorimetric methodology has been developed to detect fluoroquinolones in bacterial population and inside individual Gram-negative bacterial cells. In this work, we studied the antibiotic accumulation in cells expressing various levels of efflux pumps. The assays allow us to determine the intracellular concentration of the fluoroquinolones to study the relationships between the level of efflux activity and the antibiotic accumulation, and finally to evaluate the impact of fluoroquinolone structures in this process. This represents the first protocol to identify some structural parameters involved in antibiotic translocation and accumulation, and to illustrate the recently proposed "Structure Intracellular Concentration Activity Relationship" (SICAR) concept.


Assuntos
Antibacterianos/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Fluoroquinolonas/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular
16.
Sci Rep ; 7(1): 6722, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751669

RESUMO

Klebsiella pneumoniae, an Enterobacteriaceae that mostly causes hospital-acquired infections, belongs to the recently published WHO's list of antibiotic-resistant pathogens that pose the greatest threat to human health. Indeed, K. pneumoniae is the enterobacterial species most concerned by both resistance to extended-spectrum cephalosporins, due to extended-spectrum ß-lactamase (ESBL) production, and resistance to carbapenems, i.e. the ß-lactams with the broadest activity. Carbapenem resistance is related not only to carbapenemase production, but also the production of ESBL or AmpC and the loss of general porins. Here, we characterized the mechanisms that deprived a urinary ESBL-producing, porin-deficient K. pneumoniae isolate, isolated 13 days after the end of a 40-day course of imipenem treatment, of its carbapenem resistance. These mechanisms were observed in two in-vivo derivatives of this isolate and consisted of mutations in genes encoding molecules that participate in the downregulation of the synthesis of PhoE, a porin specialized in phosphate transport. We obtained three new derivatives from one of the two original derivatives, following in-vitro antibiotic pressure, in which the carbapenem resistance was restored because of mutations in genes encoding molecules that participate in the upregulation of PhoE synthesis. Thus, we uncovered novel mechanisms of carbapenem resistance/susceptibility switching in K. pneumoniae.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Klebsiella pneumoniae/efeitos dos fármacos , Porinas/genética , Aminoglicosídeos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/isolamento & purificação , Pessoa de Meia-Idade , Mutação , Nitrobenzenos/farmacologia , Penicilinas/farmacologia , Porinas/antagonistas & inibidores , Porinas/metabolismo , Tetraciclinas/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
17.
Sci Rep ; 7(1): 986, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428543

RESUMO

A main challenge in chemotherapy is to determine the in cellulo parameters modulating the drug concentration required for therapeutic action. It is absolutely urgent to understand membrane permeation and intracellular concentration of antibiotics in clinical isolates: passing the membrane barrier to reach the threshold concentration inside the bacterial periplasm or cytoplasm is the pivotal step of antibacterial activity. Ceftazidime (CAZ) is a key molecule of the combination therapy for treating resistant bacteria. We designed and synthesized different fluorescent CAZ derivatives (CAZ*, CAZ**) to dissect the early step of translocation-accumulation across bacterial membrane. Their activities were determined on E. coli strains and on selected clinical isolates overexpressing ß-lactamases. The accumulation of CAZ* and CAZ** were determined by microspectrofluorimetry and epifluorimetry. The derivatives were properly translocated to the periplasmic space when we permeabilize the outer membrane barrier. The periplasmic location of CAZ** was related to a significant antibacterial activity and with the outer membrane permeability. This study demonstrated the correlation between periplasmic accumulation and antibiotic activity. We also validated the method for approaching ß-lactam permeation relative to membrane permeability and paved the way for an original matrix for determining "Structure Intracellular Accumulation Activity Relationship" for the development of new therapeutic candidates.


Assuntos
Antibacterianos/farmacocinética , Ceftazidima/farmacocinética , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Ceftazidima/síntese química , Ceftazidima/química , Membrana Celular/química , Testes de Sensibilidade Microbiana , Microespectrofotometria , Estrutura Molecular , Periplasma/química , Permeabilidade
18.
Eur J Med Chem ; 127: 748-756, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27823890

RESUMO

Structure of bacterial envelope is one of the major factors contributing to Gram negative bacterial resistance. To develop new agents that target the bacterial membranes, we synthesized, by analogy with our previous peptide conjugates, new amphiphilic 3',4',6-trinaphthylmethylene neamines functionalized at position 5 through a short spacer by a chelating group, tris(2-pyridylmethyl)amine (TPA) and di-(picolyl)amine (DPA) and tetraazacyclotetradecane (Cyclam). ESI+ mass spectrometry analyses showed that neither Zn(II)(NeaDPA) nor Cu(II)(NeaCyclam) were stable in the Mueller Hinton (MH) medium used for antibacterial assays. In contrast Zn(NeaTPA) was stable in the MH medium. Interestingly, in MH, the free ligand NeaTPA was found bound to zinc, the zinc salt being the most abundant salt in this medium. Thus, the antibacterial activities of all compounds were evaluated as free ligands against E. coli strains, wild type AG100 and E. aerogenes EA289 (a clinical MDR strain that overexpresses AcrAB-TolC efflux pump), as well as AG100A an AcrAB- E. coli strain and EA298 a TolC- derivative. NeaCyclam and Zn(NeaTPA) were by far the most efficient compounds active against resistant isolate EA289 with MICs in the range 16-4 and 4 µM, respectively, while usual antibiotics such as ß-lactams and phenicols were inactive (MICs > 128) and ciprofloxacin was at 64 µM. Zn(NeaTPA) and NeaCyclam were shown to target and permeabilize the outer membrane of EA289 by promoting the cleavage of nitrocefin by periplasmic ß-lactamase. Moreover, all the neamine conjugates were able to block the efflux of 1,2'-dinaphthylamine in EA289, by acting on the efflux transporter located in the inner membrane. These membranotropic properties contribute to explain the activities of these neamine conjugates toward the MDR EA289 strain.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacter aerogenes/efeitos dos fármacos , Framicetina/química , Interações Hidrofóbicas e Hidrofílicas , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Antibacterianos/metabolismo , Permeabilidade da Membrana Celular , Cefalosporinas/metabolismo , DNA Bacteriano/metabolismo , Enterobacter aerogenes/citologia , Escherichia coli/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Compostos Organometálicos/metabolismo
19.
PLoS One ; 6(1): e16208, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21283831

RESUMO

The cyanobacterium, Microcystis aeruginosa, is able to proliferate in a wide range of freshwater ecosystems and to produce many secondary metabolites that are a threat to human and animal health. The dynamic of this production and more globally the metabolism of this species is still poorly known. A DNA microarray based on the genome of M. aeruginosa PCC 7806 was constructed and used to study the dynamics of gene expression in this cyanobacterium during the light/dark cycle, because light is a critical factor for this species, like for other photosynthetic microorganisms. This first application of transcriptomics to a Microcystis species has revealed that more than 25% of the genes displayed significant changes in their transcript abundance during the light/dark cycle and in particular during the dark/light transition. The metabolism of M. aeruginosa is compartmentalized between the light period, during which carbon uptake, photosynthesis and the reductive pentose phosphate pathway lead to the synthesis of glycogen, and the dark period, during which glycogen degradation, the oxidative pentose phosphate pathway, the TCA branched pathway and ammonium uptake promote amino acid biosynthesis. We also show that the biosynthesis of secondary metabolites, such as microcystins, aeruginosin and cyanopeptolin, occur essentially during the light period, suggesting that these metabolites may interact with the diurnal part of the central metabolism.


Assuntos
Perfilação da Expressão Gênica , Luz , Microcystis/genética , Microcystis/metabolismo , Fotoperíodo , Aminoácidos/biossíntese , Ritmo Circadiano , Regulação Bacteriana da Expressão Gênica , Metabolismo , Microcystis/efeitos da radiação , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...