Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(46): 19033-19042, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37931319

RESUMO

Chalcogenide glasses in the Na2S-GeS2-Ga2S3 pseudoternary system were synthesized using a combination route of melt-quenching and mechanical-milling methods. First, a glass rich in germanium (90GeS2-10Ga2S3) is synthesized by melt-quenching synthesis in a silica tube sealed under vacuum. This glass is used as a precursor for the second step of mechanochemistry to explore the Na2S-GeS2-Ga2S3 pseudoternary system. By using this synthesis route, the glass-forming ability is improved as the vitreous domain is enlarged, especially for Na- and Ga-rich compositions. The as-obtained amorphous powders are characterized by Raman spectroscopy, differential scanning calorimetry, X-ray total scattering, and pair distribution function (PDF) analysis. The evolution of the Raman features observed is reproduced using density functional theory calculations. Impedance spectroscopy was performed to determine the conductivity of the new glasses. The addition of germanium sulfide to the Na2S-Ga2S3 pseudobinary system enables one to increase the conductivity by 1 order of magnitude. The highest room-temperature ionic conductivity, as measured by impedance spectroscopy, is 1.8 × 10-5 S·cm-1.

2.
Inorg Chem ; 61(46): 18476-18485, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36343162

RESUMO

NaGaS2 is a newly discovered compound that has already shown great promise for a variety of applications because of its layered structure and ion exchange properties. In this work, crystalline NaGaS2 has been synthesized by an alternative method to what has been previously published, namely, by mechanochemistry, either by a direct one-step process or by a two-step process. In the one-step process, crystalline NaGaS2 is directly formed by milling sodium sulfide Na2S and gallium(III) sulfide Ga2S3. However, an amorphous material is present in majority together with the crystalline phase. In the two-step process, amorphous NaGaS2 is first obtained by mechanical milling and then heated above its glass transition temperature to obtain a glass-ceramic mainly composed of crystalline NaGaS2. For the two-step process, changes of the local atomic-level structure in amorphous NaGaS2 and after crystallization were analyzed by high-field solid-state nuclear magnetic resonance (NMR) spectroscopy as well as by X-ray total scattering and pair distribution function (PDF) analysis. Based on quantitative analysis on the 23Na NMR spectra, modifying the annealing treatment can promote the formation of the crystalline phase up to a molar fraction of 83.8%.

3.
Adv Mater ; 31(43): e1903271, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31523860

RESUMO

2D transition metal carbides, known as MXenes, are transparent when the samples are thin enough. They are also excellent electrical conductors with metal-like carrier concentrations. Herein, these characteristics are exploited to replace gold (Au) in GaAs photodetectors. By simply spin-coating transparent Ti3 C2 -based MXene electrodes from aqueous suspensions onto GaAs patterned with a photoresist and lifted off with acetone, photodetectors that outperform more standard Au electrodes are fabricated. Both the Au- and MXene-based devices show rectifying contacts with comparable Schottky barrier heights and internal electric fields. The latter, however, exhibit significantly higher responsivities and quantum efficiencies, with similar dark currents, hence showing better dynamic range and detectivity, and similar sub-nanosecond response speeds compared to the Au-based devices. The simple fabrication process is readily integratable into microelectronic, photonic-integrated circuits and silicon photonics processes, with a wide range of applications from optical sensing to light detection and ranging and telecommunications.

4.
ACS Nano ; 13(3): 3301-3309, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811181

RESUMO

Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across various defects and heterogeneities of titanium carbide (Ti3C2T x; T stands for surface terminations) MXene nanostructures under high electrical bias with sub-50 mK temperature resolution and sub-100 nm spatial resolution. We investigated several Ti3C2T x flakes having different thicknesses as well as heterogeneous MXene structures incorporating line defects or vertical heterojunctions. High-resolution temperature rise maps allow us to identify localized hot spots and to quantify the nonuniformity of the temperature fields across various morphological features. The results show that the local heating is most severe in vertical junctions of MXene flakes and is highly affected by nonuniform conduction due to the presence of line defects. These results provide a direct insight into the power dissipation of MXene-based devices and the roles of various heterogeneities that are inherent to the material synthesis process. This study provides a guideline for how a better understanding of the structure-property-processing correlations and further optimization of the synthesis routes could improve the lifetime, safety, and operation limits of the MXene-based devices.

5.
Inorg Chem ; 58(4): 2543-2549, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30688064

RESUMO

Sodium transition metal layered oxides are a class of materials which exhibits fascinating properties, such as high thermoelectric power. Whereas most of the work conducted so far focused on 3d transition metals, mainly cobalt, compounds with 4d metals could be excellent materials to obtain new strongly correlated electron systems. This work is focused on Na xRhO2 compounds, with O3- and P2-type structures. The P2-type structure was obtained by ion exchange from the potassium phase P2-K0.62RhO2. This type of synthesis was conducted here for the first time on layered oxides with 4d transition metals. The phase diagram of both structures was explored by sodium electrochemical deintercalation/intercalation in a battery. The existence of single phases was shown with presumably different physical properties. As an example, the O'3-Na1/2RhO2 compound electrochemically obtained for the first time exhibits a metallic behavior, whereas the O3-NaRhO2 phase is a semiconductor. The synthesis of each single phase existing in both the O3- and P2-type systems should lead to new insights into the structure-properties relationships of this class of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...