Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890845

RESUMO

Mushrooms contain phenolic compounds that possess health-promoting properties, including antioxidant effects. However, the low solubility and form of phenolic compounds affect their bioactivity and bioaccessibility. To overcome this limitation, our study investigates the fermentation of mushrooms to increase their free phenolic content and enhance their bioactivity. Our research focused on the impact of fermentation on both free and bound phenolic fractions (FPs and BPs, respectively) in Lentinula edodes and Lactarius deliciosus, which were successively fermented with Lactiplantibacillus plantarum LMG 17673 for 72 h. We examined the total phenolic content (TPC), phenolic profile, and antioxidant activity of both FPs and BPs. Our results showed that the TPC of BPs was higher than that of FPs in both mushrooms, with strong antioxidant capabilities. Fermentation significantly increased the TPC of FPs in both mushrooms, particularly after 24 h of fermentation. The TPC of BPs in mushrooms decreased during fermentation, indicating their release from the matrix. Additionally, we identified 30 bioactive compounds using UPLC-Q-TOF-MS/MS. Our study demonstrates for the first time that lactic acid bacteria fermentation of mushrooms with high phenolic content leads to the liberation of bound phenolics, enhancing their bioactivity and bioaccessibility.

2.
Food Chem ; 452: 139391, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713980

RESUMO

Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.


Assuntos
Larva , Lecitinas , Animais , Lecitinas/química , Larva/química , Larva/crescimento & desenvolvimento , Insetos Comestíveis/química , Dípteros/química , Dípteros/crescimento & desenvolvimento , Tenebrio/química , Simuliidae/química , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Lipídeos/química , Lipídeos/isolamento & purificação
3.
Environ Technol ; 40(28): 3773-3782, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29923788

RESUMO

The degradation of micropollutants (MPs), including pesticides, herbicides, pharmaceuticals and endocrine disrupting compounds, by ozone-based advanced oxidation techniques (AOP) was investigated in this study. The effect of different factors, such as ozone concentration, hydrogen peroxide concentration and initial pH, on the removal rate was studied in detail. The combination of UV with ozone/ H2O2 increased the MPs degradation. For example, atrazine removal increased from 12.6% to 66.9%. Increasing the concentration of ozone and H2O2 can enhance the degradation efficiency of MPs, while excess H2O2 plays a role as a scavenger for •OH. In addition, the optimizing conditions of degradation of MPs by an ozone-based AOP were investigated in this study. The optimal dosages of ozone for atrazine (ATZ), alachlor (ALA), carbamazepine (CBZ), 17-α-ethinylestradiol (EE2) and pentachlorophenol (PCP), were in the range of 0.6-0.75, while for ATZ a much higher dosage (5.4 mg/l) is needed. The optimal dosages of H2O2 concentration were at 0.75, 0.2, 0.47, 0.75 and 0.63 mM, and pH were at 10, 10, 7, 10 and 10, and reaction time at 38.5, 33.5 43, 6 and 6 min, respectively. Ozone-based AOP and in particular combination of UV with ozone and H2O2 is efficient to degrade atrazine, alachlor, carbamazepine, 17-α-ethinylestradiol and pentachlorophenol, and is attractive for future application of real wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Águas Residuárias
4.
Water Res ; 116: 1-12, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28292675

RESUMO

Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 µg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m3, while a most efficient removal of 3 kWh/m3 or lower was reached for the four other pesticides.


Assuntos
Eliminação de Resíduos Líquidos , Água , Praguicidas , Têxteis
5.
J Pharm Anal ; 7(1): 34-47, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29404016

RESUMO

Achillea millefolium and Achillea ptarmica are both plants belonging to the Asteracea family and are traditionally used for their medicinal properties. It has already been shown that some N-alkylamides (NAAs) are responsible for these pharmacological actions. Therefore, in the present study, the NAA content of the two plants was analytically characterised. Different extracts were prepared from the roots, the leaves, the stems and the flowers. The structures of NAAs have been assigned in ethanolic extracts of Achillea millefolium and Achillea ptarmica using high performance liquid chromatography - electrospray ionisation - mass spectrometry (HPLC-ESI-MS) and gas chromatography - electron impact - mass spectrometry (GC-EI-MS). Using both analytical techniques, the structures of 14 and 15 NAAs have been assigned in Achillea ptarmica and Achillea millefolium, respectively. Structures of two new NAAs, previously never observed in Achillea ptarmica, were assigned: deca-2E,6Z,8E-trienoic acid 2-methylbutylamide (homospilanthol) or a related isomeric compound and deca-2E,4E-dienoic acid N-methyl isobutylamide. The structure of homospilanthol or a related isomeric compound was also assigned in Achillea millefolium for the first time.

6.
J Hazard Mater ; 299: 647-55, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282086

RESUMO

Efficiency of modern wastewater treatment plants to remove or decompose persistent contaminants in low concentration is often insufficient to meet the demands imposed by governmental laws. Novel, efficient and cheap methods are required to address this global issue. We developed a new type of plasma reactor, in which atrazine decomposition by atmospheric dielectric barrier discharge (DBD) in dry air is combined with micropollutant adsorption on activated carbon textile and with extra bubbling of generated ozone. Investigation of reaction kinetics and by-product analysis shows that increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. By-products of first and later generations are detected with HPLC-MS analysis in water and adsorbed on the activated carbon textile. Our reactor is compared in energy efficiency with reactors described in literature, showing that combination of plasma discharge with pollutant adsorption and ozone recycling is attractive for future applications of water treatment.

7.
J Food Drug Anal ; 23(3): 552-559, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28911715

RESUMO

A simple method has been developed and validated for quantitative determination of lumefantrine in antimalarial finished pharmaceutical products using gas chromatography coupled to flame ionization detector. Lumefantrine was silylated with N,O-bis(trimethyl-silyl)trifluoro-acetamide at 70°C for 30 minutes, and chromatographic separation was conducted on a fused silica capillary (HP-5, 30 m length × 0.32 mm i.d., 0.25 µm film thickness) column. Evaluation of the method within analytical quality-by-design principles, including a central composite face-centered design for the sample derivatization process and Plackett-Burman robustness verification of the chromatographic conditions, indicated that the method has acceptable specificity toward excipients and degradants, accuracy [mean recovery = 99.5%, relative standard deviation (RSD) = 1.0%], linearity (=0.9986), precision (intraday = 96.1% of the label claim, RSD = 0.9%; interday = 96.3% label claim, RSD = 0.9%), and high sensitivity with detection limits of 0.01 µg/mL. The developed method was successfully applied to analyze the lumefantrine content of marketed fixed-dose combination antimalarial finished pharmaceutical products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...