Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 64(8): 2435-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599276

RESUMO

Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.


Assuntos
Brassinosteroides/biossíntese , Petunia/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Mutação/genética , Mutação/fisiologia , Petunia/genética , Petunia/fisiologia , Filogenia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Transdução de Sinais/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/fisiologia
2.
Plant Physiol ; 132(1): 311-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12746536

RESUMO

Lipo-chitooligosaccharides (Nod factors) are produced by symbiotic Rhizobium sp. bacteria to elicit Nod responses on their legume hosts. One of the earliest responses is the formation of phosphatidic acid (PA), a novel second messenger in plant cells. Remarkably, pathogens have also been reported to trigger the formation of PA in nonlegume plants. To investigate how host plants can distinguish between symbionts and pathogens, the effects of Nod factor and elicitors (chitotetraose and xylanase) on the formation of PA were investigated in suspension-cultured alfalfa (Medicago sativa) cells. Theoretically, PA can be synthesized via two signaling pathways, i.e. via phospholipase D (PLD) and via phospholipase C in combination with diacylglycerol (DAG) kinase. Therefore, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used to determine the contribution of each pathway to PA formation. In support, PLD activity was specifically measured by using the ability of the enzyme to transfer the phosphatidyl group of its substrate to a primary alcohol. In practice, Nod factor, chitotetraose, and xylanase induced the formation of PA and its phosphorylated product DAG pyrophosphate within 2 min of treatment. However, whereas phospholipase C and DAG kinase were activated during treatment with all three different compounds, PLD was only activated by Nod factor. No evidence was obtained for the activation of phospholipase A(2).


Assuntos
Glicerol/análogos & derivados , Lipopolissacarídeos/farmacologia , Medicago sativa/metabolismo , Oligossacarídeos/farmacologia , Fosfolipídeos/biossíntese , Xilosidases/farmacologia , Células Cultivadas , Diacilglicerol Quinase/metabolismo , Difosfatos/metabolismo , Glicerol/metabolismo , Glicerofosfolipídeos/biossíntese , Lipopolissacarídeos/metabolismo , Medicago sativa/citologia , Medicago sativa/efeitos dos fármacos , Ácidos Fosfatídicos/biossíntese , Fosfolipase D/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Xilano Endo-1,3-beta-Xilosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...