Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 51(9): 2438-46, 2003 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-12696918

RESUMO

There is a growing interest in producing food plants with increased amounts of flavonoids because of their potential health benefits. Tomatoes contain small amounts of flavonoids, most of which are located in the peel of the fruit. It has been shown that flavonoid accumulation in tomato flesh, and hence an overall increase in flavonoid levels in tomato fruit, can be achieved by means of simultaneous overexpression of the maize transcription factors LC and C1. Fruit from progeny of two modified lines (2027 and 2059) was selected for a detailed analysis and individual identification of flavonoids, at different stages of maturity. Nine major flavonoids were detected in the flesh of transgenic ripe tomatoes. LC/NMR, LC/MS, and LC/MS/MS enabled us to identify these as kaempferol-3,7-di-O-glucoside (1), kaempferol-3-O-rutinoside-7-O-glucoside (2), two dihydrokaempferol-O-hexosides (3 and 4), rutin (5), kaempferol-3-O-rutinoside (6), kaempferol-3-O-glucoside (7), naringenin-7-O-glucoside (8) and naringenin chalcone (9), which were quantified by HPLC/DAD. All but 5, 6, and 9 were detected in tomato for the first time. The total flavonoid glycoside content of ripe transgenic tomatoes of line 2059 was about 10-fold higher than that of the controls, and kaempferol glycosides accounted for 60% of this. Kaempferol glycosides comprised around 5% of the flavonoid glycoside content of ripe control tomatoes (the rest was rutin and naringenin chalcone). The rutin concentration in both transgenic and control fruits was similar.


Assuntos
Flavonoides/análise , Flavonoides/química , Glicosídeos/análise , Quempferóis , Plantas Geneticamente Modificadas/química , Solanum lycopersicum/química , Cromatografia Líquida de Alta Pressão/métodos , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética
2.
J Agric Food Chem ; 51(9): 2447-56, 2003 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-12696919

RESUMO

The maize transcription factors LC and C1 were simultaneously overexpressed in tomato with the aim of producing lines with increased amounts of flavonols. The metabolite composition of these genetically modified tomatoes has been compared with that of azygous (nonmodified) controls grown side-by-side under the same conditions. It has been possible to observe metabolic changes in both types at different stages of maturity. (1)H NMR spectra showed that the levels of glutamic acid, fructose, and some nucleosides and nucleotides gradually increase from the immature to the ripe stage, whereas some amino acids such as valine and gamma-aminobutyric acid were present in higher amounts in unripe tomatoes. Apart from the significantly increased content of six main flavonoid glycosides (mainly kaempferol-3-O-rutinoside, with additional increases in kaempferol-3,7-di-O-glucoside (1), kaempferol-3-O-rutinoside-7-O-glucoside (2), kaempferol-3-O-glucoside, a dihydrokaempferol-O-hexoside (3), and naringenin-7-O-glucoside), the levels of at least 15 other metabolites were found to be different between the two types of red tomato. Among them were citric acid, sucrose, phenylalanine, and trigonelline. However, although statistically significant, these changes in mean values were relatively minor (less than 3-fold) and within the natural variation that would be observed in a field-grown crop. Nevertheless, this study clearly showed that NMR combined with chemometrics and univariate statistics can successfully trace even small differences in metabolite levels between plants and therefore represents a powerful tool to detect potential unintended effects in genetically modified crops.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Aminoácidos/análise , Carboidratos/análise , Glicosídeos/análise , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Nucleosídeos/análise , Nucleotídeos/análise , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Zea mays/genética
3.
Nat Biotechnol ; 21(1): 77-80, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12483224

RESUMO

Immunomodulation involves the use of antibodies to alter the function of molecules and is an emerging tool for manipulating both plant and animal systems. To realize the full potential of this technology, two major obstacles must be overcome. First, most antibodies do not function well intracellularly because critical disulfide bonds cannot form in the reducing environment of the cytoplasm or because of difficulties in targeting to subcellular organelles. Second, few antibodies bind to the active sites of enzymes and thus they generally do not neutralize enzyme function. Here we show that the unique properties of single-domain antibodies from camelids (camels and llamas) can circumvent both these obstacles. We demonstrate that these antibodies can be correctly targeted to subcellular organelles and inhibit enzyme function in plants more efficiently than antisense approaches. The use of these single-domain antibody fragments may greatly facilitate the successful immunomodulation of metabolic pathways in many organisms.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Adjuvantes Imunológicos/metabolismo , Cadeias Pesadas de Imunoglobulinas/imunologia , Solanum tuberosum/metabolismo , Amido/biossíntese , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/imunologia , Adjuvantes Imunológicos/genética , Amilose/análise , Amilose/biossíntese , Animais , Camelídeos Americanos/imunologia , Camelídeos Americanos/metabolismo , Inibidores Enzimáticos/imunologia , Inibidores Enzimáticos/metabolismo , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/imunologia , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Amido/química , Amido/imunologia
4.
Plant Cell ; 14(10): 2509-26, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12368501

RESUMO

Flavonoids are a group of polyphenolic plant secondary metabolites important for plant biology and human nutrition. In particular flavonols are potent antioxidants, and their dietary intake is correlated with a reduced risk of cardiovascular diseases. Tomato fruit contain only in their peel small amounts of flavonoids, mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. To increase flavonoid levels in tomato, we expressed the maize transcription factor genes LC and C1 in the fruit of genetically modified tomato plants. Expression of both genes was required and sufficient to upregulate the flavonoid pathway in tomato fruit flesh, a tissue that normally does not produce any flavonoids. These fruit accumulated high levels of the flavonol kaempferol and, to a lesser extent, the flavanone naringenin in their flesh. All flavonoids detected were present as glycosides. Anthocyanins, previously reported to accumulate upon LC expression in several plant species, were present in LC/C1 tomato leaves but could not be detected in ripe LC/C1 fruit. RNA expression analysis of ripening fruit revealed that, with the exception of chalcone isomerase, all of the structural genes required for the production of kaempferol-type flavonols and pelargonidin-type anthocyanins were induced strongly by the LC/C1 transcription factors. Expression of the genes encoding flavanone-3'-hydroxylase and flavanone-3'5'-hydroxylase, which are required for the modification of B-ring hydroxylation patterns, was not affected by LC/C1. Comparison of flavonoid profiles and gene expression data between tomato leaves and fruit indicates that the absence of anthocyanins in LC/C1 fruit is attributable primarily to an insufficient expression of the gene encoding flavanone-3'5'-hydroxylase, in combination with a strong preference of the tomato dihydroflavonol reductase enzyme to use the flavanone-3'5'-hydroxylase reaction product dihydromyricetin as a substrate.


Assuntos
Flavanonas , Flavonoides/biossíntese , Quempferóis , Solanum lycopersicum/metabolismo , Fatores de Transcrição/genética , Zea mays/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Antocianinas/biossíntese , Antocianinas/química , Flavonoides/química , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroxilação , Luz , Solanum lycopersicum/química , Solanum lycopersicum/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Fenótipo , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Quercetina/biossíntese , Quercetina/química , Fatores de Transcrição/metabolismo
5.
Planta ; 214(5): 751-8, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11882944

RESUMO

Analysis of the oxidative processes taking place during fruit ripening in a salad tomato variety (Lycopersicon esculentum Mill. cv. Ailsa Craig) revealed changes in oxidative and antioxidative parameters. Hydrogen peroxide content, lipid peroxidation and protein oxidation were measured as indices of oxidative processes and all were found to increase at the breaker stage. The levels of the aqueous-phase antioxidants, glutathione and ascorbate, increased during the ripening process and these increases were associated with significant changes in their redox status, becoming more reduced as ripening progressed. Changes in the activities of superoxide dismutase, catalase and the enzymes involved in the ascorbate-glutathione cycle during ripening indicated that the antioxidative system plays a fundamental role in the ripening of tomato fruits.


Assuntos
Catalase/metabolismo , Frutas/enzimologia , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/enzimologia , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases , Ácido Ascórbico/metabolismo , Catalase/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Glutationa/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...