Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1122031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992834

RESUMO

Breast cancer is the most diagnosed type of cancer amongst women in economically developing countries and globally. Most breast cancers express estrogen receptor alpha (ERα) and are categorized as positive (ER+) breast cancer. Endocrine therapies such as, selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and selective estrogen receptor downregulators (SERDs) are used to treat ER+ breast cancer. However, despite their effectiveness, severe side-effects and resistance are associated with these endocrine therapies. Thus, it would be highly beneficial to develop breast cancer drugs that are as effective as current therapies, but less toxic with fewer side effects, and less likely to induce resistance. Extracts of Cyclopia species, an indigenous South African fynbos plant, have been shown to possess phenolic compounds that exhibit phytoestrogenic and chemopreventive activities against breast cancer development and progression. In the current study, three well characterized Cyclopia extracts, SM6Met, cup of tea (CoT) and P104, were examined for their abilities to modulate the levels of the estrogen receptor subtypes, estrogen receptor alpha and estrogen receptor beta (ERß), which have been recognized as crucial to breast cancer prognosis and treatment. We showed that the Cyclopia subternata Vogel (C. subternata Vogel) extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, reduced estrogen receptor alpha protein levels while elevating estrogen receptor beta protein levels, thereby reducing the ERα:ERß ratio in a similar manner as standard of care breast cancer endocrine therapies such as fulvestrant (selective estrogen receptor downregulator) and 4-hydroxytamoxifen (elective estrogen receptor modulator). Estrogen receptor alpha expression enhances the proliferation of breast cancer cells while estrogen receptor beta inhibits the proliferative activities of estrogen receptor alpha. We also showed that in terms of the molecular mechanisms involved all the Cyclopia extracts regulated estrogen receptor alpha and estrogen receptor beta protein levels through both transcriptional and translational, and proteasomal degradation mechanisms. Therefore, from our findings, we proffer that the C. subternata Vogel extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, selectively modulate estrogen receptor subtypes levels in a manner that generally supports inhibition of breast cancer proliferation, thereby demonstrating attributes that could be explored as potential therapeutic agents for breast cancer.

2.
Front Pharmacol ; 13: 1017690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210845

RESUMO

Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.

3.
Cells ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883605

RESUMO

Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress (i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with both implicated in the development of insulin resistance, the main risk factor for the development of T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than only a correlative link between the physiological elements of risk (stress and inflammation) and the development of insulin resistance.


Assuntos
Proteínas de Fase Aguda , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Proteínas de Fase Aguda/metabolismo , Proteína C-Reativa/análise , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Proteína Amiloide A Sérica , Estresse Fisiológico
4.
Biochem Biophys Res Commun ; 602: 113-119, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35263658

RESUMO

Central to the pharmacological use of glucocorticoids (GCs) is the availability of the glucocorticoid receptor alpha (GRα). However, chronic GC therapy often results in the ligand-mediated downregulation of the GRα, and the subsequent development of an acquired GC resistance. While studies have demonstrated the dimerization-dependent downregulation of GRα, as well as the molecular mechanisms through which ligand-mediated downregulation occurs, little is known regarding the relative contribution of these molecular mechanisms to the cumulative ligand-mediated downregulation of the receptor, especially within an endogenous system. Thus, to probe this, the current study evaluates the conformational-dependent regulation of GRα protein using mouse embryonic fibroblast (MEF) cells containing either wild type GRα (MEFwt) or the dimerization deficient GRα mutant (MEFdim) and inhibitors of transcription, translation, and proteasomal degradation. Results show that the promotion of GRα dimerization increases the downregulation of the receptor via two main mechanisms, proteasomal degradation of the receptor protein, and downregulation of GRwt mRNA transcripts. In contrast, when receptor dimerization is restricted these two mechanisms play a lesser role and results suggest that stabilization of GRα protein by non-coding RNAs may potentially be the major regulatory mechanism. Together, these findings clarify the relative contribution of the molecular mechanisms involved in ligand-mediated downregulation of GRα and provides pharmacological targets for the development of GRα ligands with a more favourable therapeutic index.


Assuntos
Fibroblastos , Receptores de Glucocorticoides , Animais , Regulação para Baixo , Fibroblastos/metabolismo , Glucocorticoides/farmacologia , Ligantes , Camundongos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
5.
J Biol Chem ; 298(2): 101574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007536

RESUMO

The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.


Assuntos
Dexametasona , Mutação Puntual , Receptores de Glucocorticoides , Animais , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Ligantes , Camundongos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
6.
Cells ; 10(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685511

RESUMO

For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.


Assuntos
Glucocorticoides/metabolismo , Erros Inatos do Metabolismo/genética , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/metabolismo , Regulação para Baixo/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , RNA Mensageiro/genética , Receptores de Glucocorticoides/genética
7.
Endocr Connect ; 7(12): R328-R349, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30352419

RESUMO

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.

8.
Sci Rep ; 8(1): 14266, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250038

RESUMO

Glucocorticoids (GCs), acting via the glucocorticoid receptor (GRα), remain the mainstay therapeutic choice for the treatment of inflammation. However, chronic GC use, aside from generating undesirable side-effects, results in GRα down-regulation, often coupled to a decrease in GC-responsiveness, which may culminate in acquired GC resistance. The current study presents evidence for a novel role of the dimerization state of the GRα in mediating GC-mediated GRα turnover. Through comparing the effects of dimerization promoting GCs on down-regulation of a transfected human wild type GRα (hGRwt) or a dimerization deficient GRα mutant (hGRdim), we established that a loss of receptor dimerization restricts GRα turnover, which was supported by the use of the dimerization abrogating Compound A (CpdA), in cells containing endogenous GRα. Moreover, we showed that the dimerization state of the GRα influenced the post-translational processing of the receptor, specifically hyper-phosphorylation at Ser404, which influenced the interaction of GRα with the E3 ligase, FBXW7α, thus hampering receptor turnover via the proteasome. Lastly, the restorative effects of CpdA on the GRα pool, in the presence of Dex, were demonstrated in a combinatorial treatment protocol. These results expand our understanding of factors that contribute to GC-resistance and may be exploited clinically.


Assuntos
Proteína 7 com Repetições F-Box-WD/genética , Inflamação/tratamento farmacológico , Processamento de Proteína Pós-Traducional/genética , Receptores de Glucocorticoides/química , Animais , Benzimidazóis/farmacologia , Células COS , Chlorocebus aethiops , Dexametasona/farmacologia , Dimerização , Resistência a Medicamentos/genética , Proteína 7 com Repetições F-Box-WD/química , Glucocorticoides/química , Glucocorticoides/genética , Células Hep G2 , Humanos , Inflamação/genética , Inflamação/patologia , Fosforilação/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Transfecção
9.
Front Pharmacol ; 9: 650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973879

RESUMO

Breast cancer (BC) is the leading cause of cancer-related deaths in women. Chemoprevention of BC by using plant extracts is gaining attention. SM6Met, a well-characterized extract of Cyclopia subternata with reported selective estrogen receptor subtype activity, has shown tumor suppressive effects in a chemically induced BC model in rats, which is known to be estrogen responsive. However, there is no information on the estrogen sensitivity of the relatively new orthotopic model of LA7 cell-induced mammary tumors. In the present study, the potential chemopreventative and side-effect profile of SM6Met on LA7 cell-induced tumor growth was evaluated, as was the effects of 17ß-estradiol and standard-of-care (SOC) endocrine therapies, such as tamoxifen (TAM), letrozole (LET), and fulvestrant (FUL). Tumor growth was observed in the tumor-vehicle control group until day 10 post tumor induction, which declined afterward on days 12-14. SM6Met suppressed tumor growth to the same extent as TAM, while LET, but not FUL, also showed substantial anti-tumor effects. Short-term 17ß-estradiol treatment reduced tumor volume on days prior to day 10, whereas tumor promoting effects were observed during long-term treatment, which was especially evident at later time points. Marked elevation in serum markers of liver injury, which was further supported by histological evaluation, was observed in the vehicle-treated tumor control, TAM, LET, and long-term 17ß-estradiol treatment groups. Alterations in the lipid profiles were also observed in the 17ß-estradiol treatment groups. In contrast, SM6Met did not augment the increase in serum levels of liver injury biomarkers caused by tumor induction and no effect was observed on lipid profiles. In summary, the results from the current study demonstrate the chemopreventative effect of SM6Met on mammary tumor growth, which was comparable to that of TAM, without eliciting the negative side-effects observed with this SOC endocrine therapy. Furthermore, the results of this study also showed some responsiveness of LA7-induced tumors to estrogen and SOC endocrine therapies. Thus, this model may be useful in evaluating potential endocrine therapies for hormone responsive BC.

10.
PLoS One ; 9(10): e110702, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25335188

RESUMO

Corticosteroid-binding globulin (CBG), a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs). It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR), which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE) are present in the Cbg promoter, putative binding sites for C/EBPß, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPß, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPß protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPß's involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP) after DEX treatment indicated increased co-recruitment of C/EBPß and GR to the Cbg promoter, while C/EBPß knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPß.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcortina/biossíntese , Animais , Sítios de Ligação , Disponibilidade Biológica , Proteínas de Ligação a DNA/metabolismo , Dexametasona/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Humanos , Camundongos , Regiões Promotoras Genéticas , Ratos , Transcortina/antagonistas & inibidores
11.
PLoS One ; 9(5): e96497, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24840644

RESUMO

Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼ 24 nM for transactivation of the anti-inflammatory GILZ gene and ∼ 4-20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the predominant expression of the GR in primary endocervical epithelial cells.


Assuntos
Anticoncepcionais/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Acetato de Medroxiprogesterona/farmacologia , Noretindrona/análogos & derivados , Progesterona/farmacologia , Receptores de Glucocorticoides/metabolismo , Células Cultivadas , Colo do Útero/citologia , Células Epiteliais/imunologia , Feminino , Células HeLa , Humanos , Injeções , Acetato de Medroxiprogesterona/administração & dosagem , Noretindrona/administração & dosagem , Noretindrona/farmacologia , Acetato de Noretindrona , Progesterona/administração & dosagem
12.
Contraception ; 84(4): 423-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21920200

RESUMO

BACKGROUND: Medroxyprogesterone acetate (MPA) and norethisterone (NET) and its derivatives are widely used in female reproductive therapy, but little is known about their mechanisms of action via steroid receptors in the female genital tract. MPA used as a contraceptive has been implicated in effects on local immune function. However, the relative effects of progesterone (Prog), MPA and norethisterone acetate (NET-A) on cytokine gene expression in the female genital tract are unknown. STUDY DESIGN: Using two epithelial cell lines generated from normal human vaginal (Vk2/E6E7) and ectocervical (Ect1/E6E7) cells as in vitro cell culture model systems for mucosal immunity of the female cervicovaginal environment, we investigated steroid receptor expression and activity as well as regulation of cytokine/chemokine genes by MPA and NET-A, as compared to the endogenous hormone Prog. RESULTS: We show that the Prog, androgen, glucocorticoid and estrogen receptors (PR, AR, GR and ER, respectively) are expressed in both the Vk2/E6E7 and Ect1/E6E7 cell lines, and that the GR and AR are transcriptionally active. This study is the first to show ligand-, promoter- and cell-specific regulation of IL-6, IL-8 and RANTES (regulated-upon-activation, normal T cell expressed and secreted) gene expression by Prog, MPA and NET-A in these cell lines. Moreover, we show that the repression of the TNF-α-induced RANTES gene by MPA in the Ect1/E6E7 cell line is mediated by the AR. CONCLUSION: Collectively, these data demonstrate that cell lines from different anatomical sites of the female genital tract respond differently to Prog and the synthetic progestins, most likely due to differential actions via different steroid receptors. The results highlight the importance of choice of progestins for immune function in the cervicovaginal environment. They further suggest that choice of progestins in endocrine therapy may have implications for women's risk of susceptibility to infections due to differential actions on genes involved in inflammation and immune function.


Assuntos
Anticoncepcionais Femininos/farmacologia , Citocinas/efeitos dos fármacos , Citocinas/genética , Acetato de Medroxiprogesterona/farmacologia , Noretindrona/análogos & derivados , Western Blotting , Linhagem Celular , Colo do Útero/citologia , Primers do DNA , Feminino , Regulação da Expressão Gênica , Humanos , Noretindrona/farmacologia , Acetato de Noretindrona , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Progesterona/efeitos dos fármacos , Vagina/citologia
13.
J Biol Chem ; 286(22): 19297-310, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21474440

RESUMO

TNFα signaling and cytokine levels play a crucial role in cervical immunity and the host response to infections. We investigated the role of liganded and unliganded glucocorticoid receptor (GR) in IL-6 and IL-8 gene regulation in response to TNFα in the End1/E6E7 immortalized human endocervical epithelial cell line. In the absence of glucocorticoids, both decreasing GR protein levels by an siRNA strategy and results with the GR antagonist RU486 suggest a role for the unliganded GR in reduction of TNFα-induced IL-6 and IL-8 mRNA levels in End1/E6E7 cells. Moreover, GR-dependent repression of endogenous IL-6 mRNA as well as a minimal IL-6 promoter-reporter gene is also demonstrated in COS-1 cells in the absence of GR ligand, suggesting a transcriptional mechanism that is not cell-specific. TNFα induced recruitment of both the unliganded GR and GR-interacting protein type 1 (GRIP-1) to the IL-6 promoter. This, together with GRIP-1 overexpression studies, suggests a function for GRIP-1 as a GR co-repressor in this context. TNFα was shown to induce phosphorylation of the unliganded human GR at Ser-226 but not Ser-211, unlike dexamethasone, which induced hyperphosphorylation at both serine residues. Ser-226 is shown to be required for the ligand-independent GR-mediated repression of IL-6 in response to TNFα. Taken together, these results support a model whereby the unliganded GR attenuates TNFα-stimulated IL-6 transcription by a mechanism involving selective phosphorylation and recruitment of the unliganded GR and GRIP-1 to the IL-6 promoter. These findings suggest the presence of a novel autoregulatory mechanism that may prevent overproduction of IL-6 in the endocervix, possibly protecting against negative effects of excessive inflammation.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Interleucina-6/biossíntese , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Antagonistas de Hormônios/farmacologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-6/genética , Mifepristona/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
14.
Steroids ; 76(7): 636-52, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414337

RESUMO

Synthetic progestins are used by millions of women as contraceptives and in hormone replacement therapy (HRT), although their molecular mechanisms of action are not well understood. The importance of investigating these mechanisms, as compared to those of progesterone, has been highlighted by clinical evidence showing that medroxyprogesterone acetate (MPA), a first generation progestin, increases the risk of breast cancer and coronary heart disease in HRT users. A diverse range of later generation progestins with varying structures and pharmacological properties is available for therapeutic use and it is becoming clear that different progestins elicit beneficial and adverse effects to different extents. These differences in biological activity are likely to be due to many factors including variations in dose, metabolism, pharmacokinetics, bioavailability, and regulation of, and/or binding, to serum-binding proteins and steroidogenic enzymes. Since the intracellular effects on gene expression and cell signaling of steroids are mediated via intracellular steroid receptors, differential actions via the progesterone and other steroid receptors and their isoforms, are likely to be the major cause of differential intracellular actions of progestins. Since many progestins bind not only to the progesterone receptor, but also to the glucocorticoid, androgen, mineralocorticoid, and possibly the estrogen receptors, it is plausible that synthetic progestins exert therapeutic actions as well as side-effects via some of these receptors. Here we review the molecular mechanisms of intracellular actions of old (MPA, norethisterone, levonorgestrel, gestodene) vs. new (drospirenone, dienogest, trimegestone) generation progestins, via steroid receptors.


Assuntos
Anticoncepção/métodos , Terapia de Reposição Hormonal/métodos , Congêneres da Progesterona/uso terapêutico , Receptores de Esteroides/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Congêneres da Progesterona/química , Congêneres da Progesterona/farmacocinética , Congêneres da Progesterona/farmacologia
15.
J Agric Food Chem ; 55(11): 4371-81, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17461595

RESUMO

Unfermented C. genistoides methanol extracts of different harvestings and selected polyphenols were evaluated for phytoestrogenic activity by comparing binding to both ER subtypes, transactivation of an ERE-containing promoter reporter, proliferation of MCF-7-BUS and MDA-MB-231 breast cancer cells, and binding to SHBG. The extracts from one harvesting of C. genistoides (P104) bound to both ER subtypes. All extracts transactivated ERE-containing promoter reporters via ERbeta but not via ERalpha. All extracts, except P122, caused proliferation of the estrogen-sensitive MCF-7-BUS cells. Proliferation of MCF-7-BUS cells was ER-dependent as ICI 182,780 reversed proliferation. Physiologically more relevant, extracts antagonized E2-induced MCF-7-BUS cell proliferation. Furthermore, all extracts, except P122, induced proliferation of the estrogen-insensitive MDA-MB-231 cells, suggesting that the extracts are able to induce ER-dependent and ER-independent cell proliferation. Binding to SHBG by extracts was also demonstrated. These results clearly show that C. genistoides methanol extracts display phytoestrogenic activity and act predominantly via ERbeta. HPLC and LC-MS analysis, however, suggests that the observed phytoestrogenic activity cannot be ascribed to polyphenols known to be present in other Cyclopia species.


Assuntos
Fabaceae/química , Flavonoides/farmacologia , Fenóis/farmacologia , Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Animais , Células COS , Chlorocebus aethiops , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...