Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 6(9): e24904, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21961048

RESUMO

Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC). This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca(2+)-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(P)H response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components.


Assuntos
Células Endoteliais/metabolismo , Ilhotas Pancreáticas/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Animais , Cálcio/metabolismo , Tamanho Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , História do Século XX , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , NADP/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Soroalbumina Bovina/farmacologia , Técnicas de Cultura de Tecidos
2.
Biophys J ; 97(4): 1225-31, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19686671

RESUMO

In situ atomic force microscopy (AFM) is an exceedingly powerful and useful technique for characterizing the structure and assembly of proteins in real-time, in situ, and especially at model membrane interfaces, such as supported planar lipid bilayers. There remains, however, a fundamental challenge with AFM-based imaging. Conclusions are inferred based on morphological or topographical features. It is conventionally very difficult to use AFM to confirm specific molecular conformation, especially in the case of protein-membrane interactions. In this case, a protein may undergo subtle conformational changes upon insertion in the membrane that may be critical to its function. AFM lacks the ability to directly measure such conformational changes and can, arguably, only resolve features that are topographically distinct. To address these issues, we have developed a platform that integrates in situ AFM with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. This combination of tools provides a unique means of tracking, simultaneously, conformational changes, not resolvable by in situ AFM, with topographical details that are not readily identified by conventional spectroscopy. Preliminary studies of thermal transitions in supported lipid bilayers and direct evidence of lipid-induced conformational changes in adsorbed proteins illustrates the potential of this coupled in situ functional imaging strategy.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microscopia de Força Atômica/métodos , Mapeamento de Interação de Proteínas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ligação Proteica , Integração de Sistemas
3.
J Struct Biol ; 154(1): 42-58, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16459101

RESUMO

We report here on an in situ atomic force microscopy study of the interaction of indolicidin, a tryptophan-rich antimicrobial peptide, with phase-segregated zwitterionic DOPC/DSPC supported planar bilayers. By varying the peptide concentration and bilayer composition through the inclusion of anionic lipids (DOPG or DSPG), we found that indolicidin interacts with these model membranes in one of two concentration-dependent manners. At low peptide concentrations, indolicidin forms an amorphous layer on the fluid domains when these domains contain anionic lipids. At high peptide concentrations, indolicidin appears to initiate a lowering of the gel-phase domains independent of the presence of an anionic lipid. Similar studies performed using membrane-raft mimetic bilayers comprising 30mol% cholesterol/1:1 DOPC/egg sphingomyelin revealed that indolicidin does not form a carpet-like layer on the zwitterionic DOPC domains at low peptide concentrations and does not induce membrane lowering of the liquid-ordered sphingomyelin/cholesterol-rich domains at high peptide concentration. Simultaneous AFM-confocal microscopy imaging did however reveal that indolicidin preferentially inserts into the fluid-phase DOPC domains. These data suggest that the indolicidin-membrane association is influenced greatly by specific electrostatic interactions, lipid fluidity, and peptide concentration. These insights provide a glimpse into the mechanism of the membrane selectivity of antibacterial peptides and suggest a powerful correlated approach for characterizing peptide-membrane interactions.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Membrana Celular/ultraestrutura , Colesterol/química , Géis/química , Lipossomos/química , Fluidez de Membrana , Microdomínios da Membrana/química , Microdomínios da Membrana/ultraestrutura , Microscopia de Força Atômica , Microscopia Confocal , Fosfatidilgliceróis/química , Solubilidade , Esfingomielinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...