Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402076, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949119

RESUMO

"Tandem" uncaging systems, in which a photolabile protecting group (PPG) is sensitized by an energy-harvesting antenna, may increase the photosensitivity of PPGs by several orders of magnitude for two-photon (2P) photorelease. Yet, they remain poorly accessible because of arduous multi-step synthesis. In this work, we design efficient tandem uncaging systems by (i) using a convenient assembly of the building blocks relying on click chemistry, (ii) H-bonding induced proximity thus facilitating (iii) photoinduced electron transfer (PeT) as a cooperative mechanism. A strong two-photon absorber electron-donating quadrupolar antenna and various electron-accepting PPGs (mDEAC, MNI or MDNI) were clicked stepwise onto a "tweezer-shaped" pyrido-2,6-dicarboxylate platform whose H-bonding and p-stacking abilities were exploited to keep the antenna and the PPGs in close proximity. The different electron acceptor ability of the PPGs led to dyads with wildly different behaviors. Whilst the MDNI and MNI dyads showed poor dark stability or no photo-uncaging ability due to their too high electron accepting character, the mDEAC dyad benefited from optimum redox potentials to promote PeT and slow down charge recombination, resulting in enhanced uncaging quantum yield (Fu=0.38) compared to mDEAC (Fu=0.014). The unique resulted in large 2P photo-sensitivity in the near-infrared window (240 GM at 710 nm).

2.
Molecules ; 27(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408628

RESUMO

Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs' surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M-1.cm-1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Fótons , Espectrometria de Fluorescência
3.
Adv Mater ; 33(22): e2006644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890332

RESUMO

Fluorescent nanoparticles dedicated to bioimaging applications should possess specific properties that have to be maintained in the aqueous, reactive, and crowded biological environment. These include chemical and photostability, small size (on the scale of subcellular structures), biocompatibility, high brightness, and good solubility. The latter is a major challenge for inorganic nanoparticles, which require surface coating to be made water soluble. Molecular-based fluorescent organic nanoparticles (FONs) may prove a promising, spontaneously water-soluble alternative, whose bottom-up design allows for the fine-tuning of individual properties. Here, the critical challenge of controlling the interaction of nanoparticles with cellular membranes is addressed. This is a report on bright, size-tunable, red-emitting, naturally stealthy FONs that do not require the use of antifouling agents to impede interactions with cellular membranes. As a proof of concept, single FONs diffusing up to 150 µm deep in brain tissue are imaged and tracked.


Assuntos
Encéfalo , Nanopartículas , Corantes Fluorescentes , Água
4.
Chemistry ; 26(38): 8407-8416, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430923

RESUMO

We synthesized and characterized a series of dyes built from a spirofluorene or truxene core. The quadrupolar spirofluorene system is the initial building unit for the design and preparation of more complex star-shaped dyes consisting of a truxene core bearing three di- or triphenylamine moieties with or without a thiophene connector. Their photophysical, electrochemical, and electrochemiluminescence (ECL) properties were first investigated in solution. Structure/activity relationships were derived and rationalized by comparing the quadrupolar system and trigonal truxene-core derivatives using computational studies. The photophysical and redox characteristics are drastically tuned by the introduction of a thiophene bridge and electron-donor substituents at their terminal branches. These comparative studies show the essential role of the stability of both radical cations and anions to obtain efficient ECL dyes. The stabilization of the radicals is directly related to the charge delocalization due to the π-conjugation by the thiophene bridge. The brightest ECL is achieved by annihilation and coreactant (benzoyl peroxide) pathways with the blue-emitting truxene dye, which is 2- and 4.5-times greater than that of the quadrupolar compound and reference [Ru(bpy)3 ]2+ emitter, respectively. Such an extensive study on these extended π-conjugated molecules presenting different core structures may guide the design and synthesis of new ECL dyes with a strong efficiency.

5.
Beilstein J Org Chem ; 15: 2287-2303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598181

RESUMO

Different types of two-photon absorbing (TPA) fluorophores have been synthesized and specifically functionalized to be incorporated in the structure of phosphorus dendrimers (highly branched macromolecules). The TPA fluorophores were included in the periphery as terminal functions, in the core, or in the branches of the dendrimer structures, respectively. Also the functionalization in two compartments (core and surface, or branches and surface) was achieved. The consequences of the location of the fluorophores on the fluorescence and TPA properties have been studied. Several of these TPA fluorescent dendrimers have water-solubilizing functions as terminal groups, and fluorophores at the core or in the branches. They have been used as fluorescent tools in biology for different purposes, such as tracers for imaging blood vessels of living animals, for determining the phenotype of cells, for deciphering the mechanism of action of anticancer compounds, and for safer photodynamic therapy.

6.
Chempluschem ; 84(6): 589-598, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944026

RESUMO

Photodeprotection of biological ligands with the combination of photolabile protecting groups (PPGs) and two-photon (2P) excitation techniques offers the possibility to control physiological phenomena with utmost spatial and temporal precision. Yet, designing PPGs with sufficient 2P photosensitivity still remains challenging. Direct enhancement of the 2P absorption properties usually relies on modifications of the PPG structure, which sometimes results in unpredictable and counterproductive effects on the uncaging quantum yield. In that respect, combining known PPGs with a suitable two-photon light-harvesting antenna within a modular architecture offers a promising alternative. In this Minireview, we highlight this versatile strategy, with a discussion of different tandem 2P uncagers, relying on photoinduced electron transfer (PET), triplet- energy transfer (TT-ET), or Förster resonance energy transfer (FRET) sensitization to enhance the 2P sensitivity of PPGs.


Assuntos
Fótons , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Transporte de Elétrons , Estrutura Molecular , Processos Fotoquímicos , Fotoquímica
7.
Bioconjug Chem ; 29(12): 4083-4089, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30424597

RESUMO

Most neurodegenerative disorders are characterized by deposits of misfolded proteins and neuronal degeneration in specific brain regions. Growing evidence indicates that lysosomal impairment plays a primary pathogenic role in these diseases, in particular, the occurrence of increased lysosomal pH. Thus, therapeutic development aiming at restoring lysosomal function represents a novel, precise, and promising strategy for the treatment of these pathologies. Herein we demonstrate that acidic oil-in-water nanoemulsions loaded with poly(dl-lactide- co-glycolide) (PLGA) are able to rescue impaired lysosomal pH in genetic cellular models of Parkinson's disease. For in vivo assays, nanoemulsions were labeled with an original synthetic hydrophobic far red-emitting dye to allow fluorescence monitoring. Following stereotaxic injection in the mouse brain, widespread diffusion of the nanocarrier was observed, up to 500 µm from the injection site, as well as internalization into the lysosomal compartment in brain cells. Finally, promising preliminary assays of systemic administration demonstrate that a fraction of the formulation crosses the blood brain barrier, penetrates the brain parenchyma, is internalized by cells, and colocalizes with lysosomal markers. Overall, these results suggest the feasibility and the therapeutic potential of this new nanoformulation as an effective drug delivery tool to the brain, with the potential to rescue pathological lysosomal deficits.


Assuntos
Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Nanopartículas , Doenças Neurodegenerativas/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Animais , Barreira Hematoencefálica , Linhagem Celular Tumoral , Portadores de Fármacos , Emulsões , Endocitose , Humanos , Camundongos , Doenças Neurodegenerativas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética
8.
Chemistry ; 22(36): 12702-14, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27399931

RESUMO

A series of symmetric fluorescent dyes built from a spirofluorene core bearing electroactive end groups and having different conjugated linkers were prepared with a view to their use as building blocks for the preparation of electrochemiluminescent (ECL) dyes and nanoparticles. Their electrochemical, spectroelectrochemical, and ECL properties were first investigated in solution, and structure/activity relationships were derived. The electrochemical and ECL properties show drastic variation that could be tuned by means of the nature of the π-conjugated system, the end groups, and the core. In this series, highly fluorescent dye 1 based on a spirofluorene core and triphenylamine end groups connected via thiophene moieties shows the most promising and intriguing properties. Dye 1 is reversibly oxidized in three well-separated steps and generates a very intense and large ECL signal. Its ECL efficiency is 4.5 times higher than that of the reference compound [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine). This remarkably high efficiency is due to the very good stability of the higher oxidized states and it makes 1 a very bright organic ECL luminophore. In addition, thanks to its molecular structure, this dye retains fluorescence after nanoprecipitation in water, which leads to fluorescent organic nanoparticles (FONs). The redox behavior of these FONs shows oxidation waves consistent with the initial molecular species. Finally, ECL from FONs made of 1 was recorded in water and strong ECL nanoemitters are thus obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...