Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 23(4): 653-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34417678

RESUMO

A better understanding of carotenoid dynamics (transport, absorption, metabolism, and deposition) is essential to develop a better strategy to improve astaxanthin (Ax) retention in muscle of Atlantic salmon. To achieve that, a comparison of post-smolt salmon with (+ Ax) or without (- Ax) dietary Ax supplementation was established based on a transcriptomic approach targeting pyloric, hepatic, and muscular tissues. Results in post-smolts showed that the pyloric caeca transcriptome is more sensitive to dietary Ax supplementation compared to the other tissues. Key genes sensitive to Ax supplementation could be identified, such as cd36 in pylorus, agr2 in liver, or fbp1 in muscle. The most modulated genes in pylorus were related to absorption but also metabolism of Ax. Additionally, genes linked to upstream regulation of the ferroptosis pathway were significantly modulated in liver, evoking the involvement of Ax as an antioxidant in this process. Finally, the muscle seemed to be less impacted by dietary Ax supplementation, except for genes related to actin remodelling and glucose homeostasis. In conclusion, the transcriptome data generated from this study showed that Ax dynamics in Atlantic salmon is characterized by a high metabolism during absorption at pyloric caeca level. In liver, a link with a potential of ferroptosis process appears likely via cellular lipid peroxidation. Our data provide insights into a better understanding of molecular mechanisms involved in dietary Ax supplementation, as well as its beneficial effects in preventing oxidative stress and related inflammation in muscle.


Assuntos
Antioxidantes/metabolismo , Salmo salar/metabolismo , Animais , Dieta/veterinária , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/fisiologia , Piloro/metabolismo , Salmo salar/genética , Transcriptoma , Xantofilas/metabolismo
2.
Mar Biotechnol (NY) ; 22(4): 581-593, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32588252

RESUMO

Astaxanthin (Ax), the main carotenoid responsible for the distinct red flesh color in salmonids (Oncorhynchus, Salvelinus, Salmo, and Parahucho), is added to the diet of farmed fish at a substantial cost. Despite the great economical value for the salmon industry, the key molecular mechanisms involved in the regulation of muscle coloration are poorly understood. Chinook salmon (Oncorhynchus tshawytscha) represent an ideal model to study flesh coloration because they exhibit a distinct color polymorphism responsible for two color morphs, white and red flesh pigmented fish. This study was designed to identify the molecular basis for the development of red and white coloration of fish reared under the same experimental conditions and to better understand the absorption mechanism of Ax in salmonids. Pyloric caeca, liver, and muscle of both groups (n = 6 each) were selected as the most likely critical target organs to be involved respectively in the intestinal uptake, metabolism, and retention of Ax. Difference in the transcriptome profile of each tissue using next-generation sequencing technology was conducted. Ten KEGG pathways were significantly enriched for differentially expressed genes between red and white salmon pylorus tissue, while none for the transcriptome profile in the other two tissues. Differential expressed gene (DE) analyses showed that there were relatively few differences in muscle (31 DE genes, p < 0.05) and liver (43 DE genes, p < 0.05) of white and red Chinook salmon compared approximately 1125 DE genes characterized in the pylorus tissue, with several linked to Ax binding ability, absorption, and metabolism.


Assuntos
Salmão/genética , Salmão/metabolismo , Transcriptoma , Animais , Aquicultura , Fígado/metabolismo , Músculos/metabolismo , Pigmentação/genética , Piloro/metabolismo , Xantofilas/metabolismo
3.
Food Chem ; 299: 125140, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299520

RESUMO

Pigment-depletion in the fillets of farmed Atlantic salmon (Salmo salar) arises after periods of elevated water temperatures with voluntary starving. This study tested the effects of dietary pre-loading with different pigment carotenoids (astaxanthin and/or canthaxanthin) combined with two α-tocopherol levels (normal and high: 500 and 1000 mg/kg, respectively) on pigment-depletion in vivo in Atlantic salmon after four weeks of challenge. We also tested whether oxidative stress manifested as an underlying depletion mechanism. Carotenoid levels in whole fillet homogenates were not decreased significantly post-challenge but fillet α-tocopherol concentrations were increased significantly in contrast to decreased oxidative stress indices. However, image analysis revealed localised fillet pigment-depletion following all dietary treatments. These data imply that localised pigment-depletion was not prevented by pre-loading of the fillet with different carotenoid-types/mixtures and increased of α-tocopherol levels from normal to high, respectively. Further, we suggest that oxidative stress might not facilitate pigment-depletion in vivo.


Assuntos
Cantaxantina/metabolismo , Pigmentos Biológicos/metabolismo , Salmo salar/fisiologia , alfa-Tocoferol/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aquicultura/métodos , Cantaxantina/análise , Dieta , Feminino , Produtos Pesqueiros/análise , Estresse Oxidativo , Pigmentação , Inanição , Temperatura , Xantofilas/análise , Xantofilas/metabolismo
4.
Fish Shellfish Immunol ; 33(6): 1258-68, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23026718

RESUMO

Since mucosal surfaces represent major portals of entry for pathogens, its associated immune system is important to protect the organism. In this paper, we compared at the cellular and molecular levels intestinal leukocyte suspensions with their head kidney (HK) or peripheral blood (PBL) counterparts to highlight characteristics of intestinal immune functions in healthy rainbow trout. These studies show that intestinal phagocytes are less activated by yeast cells but when they are activated they can ingest as many yeast cells as their HK counterparts. A natural cytotoxic activity could be detected which is twice higher in intestinal than in HK leukocyte preparations. This natural cytotoxic activity is correlated with the expression of transcripts encoding the natural killer enhancement factor (NKEF). Intestinal leukocytes did not respond to an in vitro mitogenic stimulation performed under classical culture conditions. And finally, a high expression of CD8α transcripts was observed in gut leukocyte preparations, suggesting that the intestine could contain a high proportion of T cells expressing the αα homodimeric form of CD8. This kind of comparison on nonimmunized fish provides better knowledge on basal immune functions in the intestine to, analyze later on, immune responses induced by an antigenic stimulation.


Assuntos
Rim Cefálico/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Leucócitos/imunologia , Oncorhynchus mykiss/imunologia , Fagócitos/imunologia , Animais , Área Sob a Curva , Antígenos CD8/imunologia , Centrifugação com Gradiente de Concentração/veterinária , Testes Imunológicos de Citotoxicidade/veterinária , Primers do DNA/genética , Rim Cefálico/citologia , Mucosa Intestinal/citologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Estatísticas não Paramétricas , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...