Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(46): 53913-53923, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955400

RESUMO

Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.

2.
Cureus ; 15(9): e45408, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854750

RESUMO

Background Heart rate variability (HRV) is one piece among a complex network of adaptations existent in athletes that help them gain a better understanding of their own physiology. Sympathovagal balance is one of the spectral components of HRV analysis and is used to assess the frequently changing oscillations of a healthy heart, which can help in gauging the response of cardiac function towards physiological stress during exercise. This index is extensively used in appraising cardiac autonomic modulation. An evaluation of body composition in athletes has become a critical consideration when tracking HRV, as it helps practitioners understand the role of the autonomic nervous system (ANS) in obesity. The body shape index (BSI), which is based on waist circumference (WC), is an anthropometric parameter with decent predictive ability when measuring centripetal obesity. In this regard, the current study is an attempt to unravel the relationship between BSI and sympathovagal balance during exercise performed on two different instruments (treadmill and ergometer) by elite and amateur athletes. Methods It was an observational case-control study that included 30 elite and 120 amateur athletes. Symptom-limited exercise testing was performed by athletes on a motorized treadmill and ergometer in the sports physiology laboratory of a rural medical college in central India. Different anthropometric parameters like BSI and body surface area (BSA) were also recorded. Short-term HRV extracted from electrocardiogram (ECG) recordings was obtained using the Power Lab system and HRV analysis by LabChart software. Results The sympathovagal ratio, i.e., ratio of low frequency (LF) to high frequency (HF) in elite and amateur male populations showed a higher value than that in females, indicating a dominant sympathetic response in the males. There was a significant (p=0.042) positive correlation (r=0.24) between BSI and LF/HF Ratio in amateur females during treadmill exercise, whereas a significant (p=0.049) negative correlation (r=-0.27) was obtained in amateur males during ergometer exercise. Hence, increased weight and BSI were found to be associated with high sympathetic dominance, indicating a sympathovagal imbalance. Conclusion We attempted to explore the interaction between BSI and LF/HF during exercise performed on two different instruments (treadmill and ergometer) by elite and amateur athletes, which can help in testing the response of cardiac function to stress experienced during exercise. The study's uniqueness stems from discovering the relationship between BSI and HRV and how this relationship impacts sports performance. BSI measurement in athletes, both elite and amateur, allows for the assessment and forecasting of potential autonomic activity under exercise-induced stress by linking HRV with BSI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...