Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Opt Mater ; 1(5): 1012-1025, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37255505

RESUMO

Luminescent solar concentrators (LSCs) are a promising technology to help integrate solar cells into the built environment, as they are colorful, semitransparent, and can collect diffuse light. While LSCs have traditionally been cuboidal, in recent years, a variety of unconventional geometries have arisen, for example, circular, curved, polygonal, wedged, and leaf-shaped designs. These new designs can help reduce optical losses, facilitate incorporation into the built environment, or unlock new applications. However, as fabrication of complex geometries can be time- and resource-intensive, the ability to simulate the expected LSC performance prior to production would be highly advantageous. While a variety of software exists to model LSCs, it either cannot be applied to unconventional geometries, is not open-source, or is not tractable for most users. Therefore, here we introduce a significant upgrade of the widely used Monte Carlo ray-trace software pvtrace to include: (i) the capability to characterize unconventional geometries and improved relevance to standard measurement configurations; (ii) increased computational efficiency; and (iii) a graphical user interface (GUI) for ease-of-use. We first test these new features against data from the literature as well as experimental results from in-house fabricated LSCs, with agreement within 1% obtained for the simulated versus measured external photon efficiency. We then demonstrate the broad applicability of pvtrace by simulating 20 different unconventional geometries, including a variety of different shapes and manufacturing techniques. We show that pvtrace can be used to predict the optical efficiency of 3D-printed devices. The more versatile and accessible computational workflow afforded by our new features, coupled with 3D-printed prototypes, will enable rapid screening of more intricate LSC architectures, while reducing experimental waste. Our goal is that this accelerates sustainability-driven design in the LSC field, leading to higher optical efficiency or increased utility.

2.
Nature ; 604(7905): 287-291, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418635

RESUMO

Thermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage1,2 and conversion3-9 that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs (Fig. 1a) using an integrated back surface reflector and a tungsten emitter at 2,000 °C (ref. 10), TPV fabrication and performance have improved11,12. However, despite predictions that TPV efficiencies can exceed 50% (refs. 11,13,14), the demonstrated efficiencies are still only as high as 32%, albeit at much lower temperatures below 1,300 °C (refs. 13-15). Here we report the fabrication and measurement of TPV cells with efficiencies of more than 40% and experimentally demonstrate the efficiency of high-bandgap tandem TPV cells. The TPV cells are two-junction devices comprising III-V materials with bandgaps between 1.0 and 1.4 eV that are optimized for emitter temperatures of 1,900-2,400 °C. The cells exploit the concept of band-edge spectral filtering to obtain high efficiency, using highly reflective back surface reflectors to reject unusable sub-bandgap radiation back to the emitter. A 1.4/1.2 eV device reached a maximum efficiency of (41.1 ± 1)% operating at a power density of 2.39 W cm-2 and an emitter temperature of 2,400 °C. A 1.2/1.0 eV device reached a maximum efficiency of (39.3 ± 1)% operating at a power density of 1.8 W cm-2 and an emitter temperature of 2,127 °C. These cells can be integrated into a TPV system for thermal energy grid storage to enable dispatchable renewable energy. This creates a pathway for thermal energy grid storage to reach sufficiently high efficiency and sufficiently low cost to enable decarbonization of the electricity grid.


Assuntos
Eletricidade , Temperatura Alta , Raios Infravermelhos , Temperatura
3.
J Chem Phys ; 156(13): 134116, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395896

RESUMO

Understanding the excited state properties of molecules provides insight into how they interact with light. These interactions can be exploited to design compounds for photochemical applications, including enhanced spectral conversion of light to increase the efficiency of photovoltaic cells. While chemical discovery is time- and resource-intensive experimentally, computational chemistry can be used to screen large-scale databases for molecules of interest in a procedure known as high-throughput virtual screening. The first step usually involves a high-speed but low-accuracy method to screen large numbers of molecules (potentially millions), so only the best candidates are evaluated with expensive methods. However, use of a coarse first-pass screening method can potentially result in high false positive or false negative rates. Therefore, this study uses machine learning to calibrate a high-throughput technique [eXtended Tight Binding based simplified Tamm-Dancoff approximation (xTB-sTDA)] against a higher accuracy one (time-dependent density functional theory). Testing the calibration model shows an approximately sixfold decrease in the error in-domain and an approximately threefold decrease in the out-of-domain. The resulting mean absolute error of ∼0.14 eV is in line with previous work in machine learning calibrations and out-performs previous work in linear calibration of xTB-sTDA. We then apply the calibration model to screen a 250k molecule database and map inaccuracies of xTB-sTDA in chemical space. We also show generalizability of the workflow by calibrating against a higher-level technique (CC2), yielding a similarly low error. Overall, this work demonstrates that machine learning can be used to develop a cost-effective and accurate method for large-scale excited state screening, enabling accelerated molecular discovery across a variety of disciplines.


Assuntos
Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Calibragem , Bases de Dados de Compostos Químicos , Teoria da Densidade Funcional , Ensaios de Triagem em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...