Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 121(40): 7641-7654, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28902512

RESUMO

Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.

2.
Sci Total Environ ; 562: 550-560, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27110969

RESUMO

From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Bélgica , Galactose/análogos & derivados , Galactose/análise , Glucose/análogos & derivados , Glucose/análise , Manose/análogos & derivados , Manose/análise , Fumaça/análise , Madeira
3.
Environ Sci Technol ; 48(21): 12671-8, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25271849

RESUMO

Evidence is provided that the green leaf volatile 3-Z-hexenal serves as a precursor for biogenic secondary organic aerosol through the formation of polar organosulfates (OSs) with molecular weight (MW) 226. The MW 226 C6-OSs were chemically elucidated, along with structurally similar MW 212 C5-OSs, whose biogenic precursor is likely related to 3-Z-hexenal but still remains unknown. The MW 226 and 212 OSs have a substantial abundance in ambient fine aerosol from K-puszta, Hungary, which is comparable to that of the isoprene-related MW 216 OSs, known to be formed through sulfation of C5-epoxydiols, second-generation gas-phase photooxidation products of isoprene. Using detailed interpretation of negative-ion electrospray ionization mass spectral data, the MW 226 compounds are assigned to isomeric sulfate esters of 3,4-dihydroxyhex-5-enoic acid with the sulfate group located at the C-3 or C-4 position. Two MW 212 compounds present in ambient fine aerosol are attributed to isomeric sulfate esters of 2,3-dihydroxypent-4-enoic acid, of which two are sulfated at C-3 and one is sulfated at C-2. The formation of the MW 226 OSs is tentatively explained through photooxidation of 3-Z-hexenal in the gas phase, resulting in an alkoxy radical, followed by a rearrangement and subsequent sulfation of the epoxy group in the particle phase.


Assuntos
Aerossóis/química , Hexobarbital/análise , Folhas de Planta/química , Sulfatos/química , Compostos Orgânicos Voláteis/análise , Atmosfera/química , Cromatografia Líquida , Hexobarbital/química , Hungria , Espectrometria de Massas , Peso Molecular
4.
Environ Sci Technol ; 48(9): 4901-8, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24697354

RESUMO

An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an α-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in sufficient amounts in laboratory studies and the occurrence of isobaric isomers, a complete assignment for individual MW 188 compounds could not be achieved in these studies. Results from a comprehensive mass spectrometric analysis are presented here to corroborate the proposed structure of the most abundant MW 188 compound as a 2-hydroxyterpenylic acid diastereoisomer with 2R,3R configuration. The application of collision-induced dissociation with liquid chromatography/electrospray ionization-ion trap mass spectrometry in both negative and positive ion modes, as well as chemical derivatization to methyl ester derivatives and analysis by the latter technique and gas chromatography/electron ionization mass spectrometry, enabled a comprehensive characterization of MW 188 isomers, including a detailed study of the fragmentation behavior using both mass spectrometric techniques. Furthermore, a MW 188 positional isomer, 4-hydroxyterpenylic acid, was tentatively identified, which also is of atmospheric relevance as it could be detected in ambient fine aerosol. Quantum chemical calculations were performed to support the diastereoisomeric assignment of the 2-hydroxyterpenylic acid isomers. Results from a time-resolved α-pinene photooxidation experiment show that the 2-hydroxyterpenylic acid 2R,3R diastereoisomer has a time profile distinctly different from that of 3-methyl-1,2,3-butanetricarboxylic acid, a marker for oxygenated (aged) secondary organic aerosol. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of α-pinene in future studies.


Assuntos
4-Butirolactona/análogos & derivados , Acetatos/química , Monoterpenos/química , Oxigênio/química , 4-Butirolactona/química , Aerossóis , Poluentes Atmosféricos/análise , Monoterpenos Bicíclicos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Monoterpenos/análise , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
5.
Rapid Commun Mass Spectrom ; 27(7): 784-94, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23495025

RESUMO

RATIONALE: A considerable fraction of atmospheric particulate fine matter consists of organosulfates, with some of the most polar ones originating from the oxidation of isoprene. Their structural characterization provides insights into the nature of gas-phase precursors as well as into formation pathways. METHODS: The structures of unknown polar organosulfates present in ambient particulate fine matter were characterized using liquid chromatography/(-)electrospray ionization mass spectrometry (LC/(-)ESI-MS), including ion trap MS(n) and accurate mass measurements, derivatization of the carbonyl group into 2,4-dinitrophenylhydrazones, detailed interpretation of the MS data, and in a selected case comparison of their LC and MS behavior with that of synthesized reference compounds. RESULTS: Polar organosulfates with molecular weights (MWs) of 156, 170, 184 and 200 were attributed to/or confirmed as derivatives of glycolic acid (156), lactic acid (170), 1,2-dihydroxy-3-butanone (184), glycolic acid glycolate (200), 2-methylglyceric acid (200), and 2,3-dihydroxybutanoic acid (200). In the case of the MW 184 compound an unambiguous assignment was obtained through synthesis of reference compounds. CONCLUSIONS: A more complete structural characterization of polar organosulfates that originate from isoprene secondary organic aerosol was achieved. An important atmospheric finding is the presence of an organosulfate that is related to methyl vinyl ketone, a major gas-phase oxidation product of isoprene. In addition, minor polar organosulfates related to crotonaldehyde were identified.


Assuntos
Aerossóis/química , Butadienos/química , Hemiterpenos/química , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Pentanos/química , Sulfatos/química , Cromatografia Líquida , Modelos Moleculares , Peso Molecular
6.
Faraday Discuss ; 165: 261-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601006

RESUMO

In the present work, we have evaluated whether isomeric C5-alkene diols (1,2-dihydroxy-2-methyl-3-butene, 1,2-dihydroxy-3-methyl-3-butene, and 1,4-dihydroxy-2-methyl-2-butene (cis + trans)), which have first been detected upon photooxidation of isoprene in the absence of NO and are known to be formed in the ambient atmosphere, can serve as precursors for the 2-methyltetrols, C5-alkene triols, and 2-methylglyceric acid under low-NO(x) conditions. The C5-alkene diols were prepared following published synthesis procedures. It is shown that under the applied chamber conditions the isomeric C5-alkene diols give rise to 2-methyltetrols with different threo/erythro abundance ratios and that certain diols produce 2-methylglyceric acid, but that they do not form C5-alkene triols. Furthermore, it is shown that the photooxidation of isoprene under the applied chamber conditions employing photolysis of H2O2 under dry conditions yields relatively small amounts of C5-alkene triols compared to those of the 2-methyltetrols, unlike under ambient conditions. It is argued that the chamber conditions are not optimal for the formation of C5-epoxydiols, which serve as gas-phase precursors for the C5-alkene triols, and likely as in some previous studies favor the formation of C5-alkene diols as a result of RO2 + RO2 reactions.


Assuntos
Aerossóis/química , Alcenos/química , Butadienos/química , Hemiterpenos/química , Óxidos de Nitrogênio/química , Compostos Orgânicos/química , Pentanos/química , Processos Fotoquímicos , Oxirredução
7.
J Chromatogr A ; 1268: 35-43, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23122275

RESUMO

Nitrogen-containing organic compounds in the atmosphere have drawn attention owing to their impact on aerosol chemistry and physics and their potential adverse effects on the biosphere. Among them, nitrocatechols and their homologs have recently been associated with biomass burning. In the present study, nitrocatechols, nitrophenols, nitroguaiacols and nitrosalicylic acids (NSAs) were simultaneously quantified for the first time by using a new analytical method based on liquid chromatography/tandem mass spectrometry, which was systematically optimized and validated. Several analyte specific issues regarding the sample preparation and chromatographic analysis were addressed in order to ensure method sensitivity, precision, and accuracy. Sample matrix effects were thoroughly investigated in order to ensure method specificity. The method was found to be sensitive with limits of detection ranging from 0.1 to 1.0 µg L(-1), and with accuracy generally between 90 and 104%. The relative standard deviations for repeatability and intermediate precision were better than 4% and 9%, respectively. The method was applied to the analysis of winter and summer PM(10) samples from the city of Ljubljana, Slovenia. Aerosol concentrations as high as 152 and 134 ng m(-3) were obtained for the major aerosol nitro-aromatics: 4-nitrocatechol (4NC) and methyl-nitrocatechols (MNCs), respectively. Up to 500-times higher concentrations of 4NC and MNCs were found in winter compared to summer aerosols. The correlation analysis for winter samples showed that 4NC, MNCs, and NSAs are strongly inter-correlated (R(2)=0.84-0.96). Significant correlations between these analytes and anhydrosugars support their proposed origin from biomass burning. The studied nitro-aromatics were found to constitute a non-negligible fraction (around 1%) of the organic carbon.


Assuntos
Poluentes Atmosféricos/análise , Cromatografia Líquida/métodos , Nitrocompostos/análise , Material Particulado/análise , Espectrometria de Massas em Tandem/métodos
8.
Sci Total Environ ; 437: 226-36, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22940483

RESUMO

From February 2010 to February 2011 PM10 aerosol samples were simultaneously taken every 4th day at 7 monitoring sites in Flanders, Belgium. Two of the sites (i.e., Borgerhout and Gent) were urban background sites; one (i.e., Mechelen) a suburban background site, and the other four (i.e., Hamme, Lier, Retie, and Houtem) rural background sites, whereby Hamme and Lier were expected to be particularly impacted by biomass burning. The samplings were done for 24h and 47-mm diameter Pallflex® Tissuquartz™ 2500 QAT-UP filters were used. After sampling the PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical transmission analysis and the wood burning tracers levoglucosan, mannosan, and galactosan were determined by means of gas chromatography/mass spectrometry. The atmospheric concentrations of levoglucosan and the other two monosaccharide anhydrides showed a very clear seasonal variation at each site, with highest levels in winter, followed by autumn, spring, and summer. The levoglucosan levels for 5 of our 7 sites (i.e., Retie, Lier, Mechelen, Borgerhout, and Gent) were very highly correlated with each other (all between site correlation coefficients r>0.9, except for one value of 0.86) and the levels in the parallel samples of these 5 sites were similar, indicating that wood burning at these 5 sites was a regional phenomenon and that it was taking place in many individual houses on similar occasions (e.g., on cold days, weekends or holidays). The levoglucosan levels at Houtem and the correlation coefficients of the 5 sites with Houtem were lower, which is explained by the fact that the latter site is at less than 20 km from the North Sea so that the air there is often diluted by rather clean westerly maritime air. A peculiar behavior was seen for Hamme, with on many occasions very high levoglucosan levels, which was attributed to the fact that there is wood burning going on in several houses nearby this site. From our levoglucosan/mannosan ratios we derived the relative contributions of softwood and hardwood burning, thereby following the same approach as used by Schmidl et al. (Atmos Environ 2008;38:126-41). It was found that softwood burning accounted, on average, for about 70%, and there was little variation in this percentage with site or with season. The levoglucosan data were used to assess the contribution of wood burning to the OC and to the PM10 mass, again following the approach of Schmidl et al. (2008). The annual average contributions of wood burning OC to the PM10 OC were in the range of 20-25% for 6 of our 7 sites and 36% for Hamme; the averages for summer were 2.0-3.9% for the 6 sites and 14.5% for Hamme; the corresponding data for winter were 36-43% and 60%. As to the contribution from wood burning to the PM10 mass, the annual averages were in the range of 4.8-6.3% for 6 of our 7 sites and 13.3% at Hamme; the averages for summer were 0.51-1.14% for the 6 sites and 5.0% for Hamme; the corresponding data for winter were 8.6-11.3% and 22%. Our finding that wood burning is an important contributor to the OC and the PM10 mass, especially in winter, is in line with published data from various other sites in other European countries.


Assuntos
Material Particulado/análise , Madeira , Aerossóis , Poluição do Ar/análise , Bélgica , Biomarcadores/análise , Monitoramento Ambiental/métodos , Glucose/análogos & derivados , Glucose/análise , Monossacarídeos/análise , Compostos Orgânicos/análise , Tamanho da Partícula , Estações do Ano
9.
J Mass Spectrom ; 46(4): 425-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21438093

RESUMO

In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, ß-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.


Assuntos
Aerossóis/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Terpenos/química , Árvores , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Acetatos/química , Cromatografia Líquida de Alta Pressão , Hungria , Isomerismo , Peso Molecular , Oxirredução , Terpenos/isolamento & purificação
10.
Environ Sci Technol ; 43(18): 6976-82, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19806730

RESUMO

Novel secondary organic aerosol (SOA) products from the monoterpene alpha-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic and 2-hydroxyterpenylic acid, and diaterpenylic acid acetate. The structural characterizations were based on the synthesis of reference compounds and detailed interpretation of mass spectral data. Terpenylic acid and diaterpenylic acid acetate are early oxidation products generated upon both photooxidation and ozonolysis, while 2-hydroxyterpenylic acid is an abundant SOA tracer in ambient fine aerosol that can be explained by further oxidation of terpenylic acid. Quantum chemical calculations support that noncovalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. The molecular properties allow us to explain initial particle formation in laboratory chamber experiments and are suggested to play a role in new particle formation and growth above forests, a natural phenomenon that has fascinated scientists for more than a century.


Assuntos
4-Butirolactona/análogos & derivados , Acetatos/química , Ácidos Carboxílicos/química , Monoterpenos/química , Material Particulado/síntese química , Árvores/química , 4-Butirolactona/química , Aerossóis/análise , Monoterpenos Bicíclicos , Cromatografia Líquida , Dimerização , Glutaratos , Ligação de Hidrogênio , Oxirredução , Espectrometria de Massas por Ionização por Electrospray
11.
J Phys Chem A ; 112(36): 8345-78, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18710205

RESUMO

Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate that the organosulfate contribution to the total organic mass fraction of ambient aerosol collected from K-puszta, Hungary, a field site with a similar organosulfate composition as that found in the present study for the southeastern U.S., can be as high as 30%.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Fotoquímica , Ésteres do Ácido Sulfúrico/química , Monoterpenos Acíclicos , Alcenos/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/química , Butadienos/química , Cromatografia Líquida , Cicloexenos/química , Hemiterpenos/química , Limoneno , Espectrometria de Massas , Monoterpenos/química , Oxirredução , Pentanos/química , Terpenos/química , Volatilização
12.
J Mass Spectrom ; 43(3): 371-82, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17968849

RESUMO

In the present study, we have characterized in detail the MS(2) and MS(3) fragmentation behaviors, using electrospray ionization (ESI) in the negative ion mode, of previously identified sulfated isoprene secondary organic aerosol compounds, including 2-methyltetrols, 2-methylglyceric acid, 2-methyltetrol mononitrate derivatives, glyoxal and methylglyoxal. A major fragmentation pathway for the deprotonated molecules of the sulfate esters of 2-methyltetrols and 2-methylglyceric acid and of the sulfate derivatives of glyoxal and methylglyoxal is the formation of the bisulfate [HSO(4)](-) anion, while the deprotonated sulfate esters of 2-methyltetrol mononitrate derivatives preferentially fragment through loss of nitric acid. Rational interpretation of MS(2), MS(3) and accurate mass data led to the structural characterization of unknown polar compounds in K-puszta fine aerosol as organosulfate derivatives of photooxidation products of unsaturated fatty acids, i.e. 2-hydroxy-1,4-butanedialdehyde, 4,5- and 2,3-dihydroxypentanoic acids, and 2-hydroxyglutaric acid, and of alpha-pinene, i.e. 3-hydroxyglutaric acid. The deprotonated molecules of the sulfated hydroxyacids, 2-methylglyceric acid, 4,5- and 2,3-dihydroxypentanoic acid, and 2- and 3-hydroxyglutaric acids, showed in addition to the [HSO(4)](-) ion (m/z 97) neutral losses of water, CO(2) and/or SO(3), features that are characteristic of humic-like substances. The polar organosulfates characterized in the present work are of climatic relevance because they may contribute to the hydrophilic properties of fine ambient aerosol. In addition, these compounds probably serve as ambient tracer compounds for the occurrence of secondary organic aerosol formation under acidic conditions.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Butadienos/química , Ácidos Graxos Insaturados/química , Hemiterpenos/química , Pentanos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ésteres do Ácido Sulfúrico/análise , Poluentes Atmosféricos/síntese química , Poluentes Atmosféricos/química , Aldeídos/análise , Cromatografia Líquida/métodos , Glutaratos/análise , Estrutura Molecular , Óxidos de Nitrogênio/química , Ácidos Pentanoicos/análise , Fotoquímica , Dióxido de Enxofre/química , Ésteres do Ácido Sulfúrico/química
13.
Environ Sci Technol ; 41(5): 1628-34, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17396652

RESUMO

Detailed organic analysis of fine (PM2.5) rural aerosol collected during summer at K-puszta, Hungary from a mixed deciduous/coniferous forest site shows the presence of polar oxygenated compounds that are also formed in laboratory irradiated alpha-pinene/NOx/air mixtures. In the present work, two major photooxidation products of alpha-pinene were characterized as the hydroxydicarboxylic acids, 3-hydroxyglutaric acid, and 2-hydroxy-4-isopropyladipic acid, based on chemical, chromatographic, and mass spectral data. Different types of volatile derivatives, including trimethylsilyl ester/ether, methyl ester trimethylsilyl ether, and ethyl ester trimethylsilyl ether derivatives were measured by gas chromatography/mass spectrometry (GC/MS), and their electron ionization (El) spectra were interpreted in detail. The proposed structures of the hydroxydicarboxylic acids were confirmed or supported with reference compounds. 2-Hydroxy-4-isopropyladipic acid formally corresponds to a further reaction product of pinic acid involving addition of a molecule of water and opening of the dimethylcyclobutane ring; this proposal is supported by a laboratory irradiation experiment with alpha-pinene/NOJ0 air. In addition, we report the presence of a structurally related minor alpha-pinene photooxidation product, which was tentatively identified as the C7 homolog of 3-hydroxyglutaric acid, 3-hydroxy-4,4-dimethylglutaric acid. The detection of 2-hydroxy-4-isopropyladipic acid in ambient aerosol provides an explanation for the relatively low atmospheric concentrations of pinic acid found during daytime in forest environments.


Assuntos
Aerossóis/análise , Ácidos Dicarboxílicos/análise , Monoterpenos/química , Monoterpenos Bicíclicos , Oxirredução , Fotoquímica , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray
14.
J Mass Spectrom ; 42(1): 101-16, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17154243

RESUMO

In the present work, we have characterized in detail the chemical structures of secondary organic aerosol (SOA) components that were generated in a smog chamber and result from the photooxidation of isoprene under high-NO(x) conditions typical for a polluted atmosphere. Isoprene high-NO(x) SOA contains 2-methylglyceric acid (2-MG) and oligoester derivatives thereof. Trimethylsilylation, in combination with capillary gas chromatography (GC)/ion trap mass spectrometry (MS) and detailed interpretation of the MS data, allowed structural characterization the polar oxygenated compounds present in isoprene SOA up to 2-MG trimers. GC separation was achieved between 2-MG linear and branched dimers or trimers, as well as between the 2-MG linear dimer and isomeric mono-acetate derivatives thereof. The electron ionization (EI) spectra of the trimethylsilyl derivatives contain a wealth of structural information, including information about the molecular weight (MW), oligoester linkages, terminal carboxylic and hydroxymethyl groups, and esterification sites. Only part of this information can be achieved with a soft ionization technique such as electrospray (ESI) in combination with collision-induced dissociation (CID). The methane chemical ionization (CI) data were used to obtain supporting MW information. Interesting EI spectral differences were observed between the trimethylsilyl derivatives of 2-MG linear and branched dimers or trimers and between 2-MG linear dimer mono-acetate isomers.


Assuntos
Poluentes Atmosféricos/química , Butadienos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glutamatos/química , Hemiterpenos/química , Pentanos/química , Compostos de Trimetilsilil/química , Aerossóis , Poluição do Ar , Butadienos/efeitos da radiação , Dimerização , Hemiterpenos/efeitos da radiação , Isomerismo , Luz , Oxirredução , Pentanos/efeitos da radiação
15.
J Phys Chem A ; 110(31): 9665-90, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16884200

RESUMO

Recent work in our laboratory has shown that the photooxidation of isoprene (2-methyl-1,3-butadiene, C(5)H(8)) leads to the formation of secondary organic aerosol (SOA). In the current study, the chemical composition of SOA from the photooxidation of isoprene over the full range of NO(x) conditions is investigated through a series of controlled laboratory chamber experiments. SOA composition is studied using a wide range of experimental techniques: electrospray ionization-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, high-resolution mass spectrometry, online aerosol mass spectrometry, gas chromatography/mass spectrometry, and an iodometric-spectroscopic method. Oligomerization was observed to be an important SOA formation pathway in all cases; however, the nature of the oligomers depends strongly on the NO(x) level, with acidic products formed under high-NO(x) conditions only. We present, to our knowledge, the first evidence of particle-phase esterification reactions in SOA, where the further oxidation of the isoprene oxidation product methacrolein under high-NO(x) conditions produces polyesters involving 2-methylglyceric acid as a key monomeric unit. These oligomers comprise approximately 22-34% of the high-NO(x) SOA mass. Under low-NO(x) conditions, organic peroxides contribute significantly to the low-NO(x) SOA mass (approximately 61% when SOA forms by nucleation and approximately 25-30% in the presence of seed particles). The contribution of organic peroxides in the SOA decreases with time, indicating photochemical aging. Hemiacetal dimers are found to form from C(5) alkene triols and 2-methyltetrols under low-NO(x) conditions; these compounds are also found in aerosol collected from the Amazonian rainforest, demonstrating the atmospheric relevance of these low-NO(x) chamber experiments.


Assuntos
Butadienos/química , Hemiterpenos/química , Pentanos/química , Aerossóis/química , Espectrometria de Massas , Estrutura Molecular , Óxido Nítrico/química , Oxirredução , Fotoquímica
16.
Science ; 303(5661): 1173-6, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14976309

RESUMO

Detailed organic analysis of natural aerosols from the Amazonian rain forest showed considerable quantities of previously unobserved polar organic compounds, which were identified as a mixture of two diastereoisomeric 2-methyltetrols: 2-methylthreitol and 2-methylerythritol. These polyols, which have the isoprene skeleton, can be explained by OH radical-initiated photooxidation of isoprene. They have low vapor pressure, allowing them to condense onto preexisting particles. It is estimated that photooxidation of isoprene results in an annual global production of about 2 teragrams of the polyols, a substantial fraction of the Intergovernmental Panel on Climate Change estimate of between 8 and 40 teragrams per year of secondary organic aerosol from biogenic sources.

17.
J Mass Spectrom ; 37(12): 1249-57, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12489085

RESUMO

We developed and validated a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and the related monosaccharide anhydrides, mannosan, galactosan and 1,6-anhydro-beta-D-glucofuranose in urban atmospheric aerosols collected on quartz fiber filters. The method is based on extraction with dichloromethane-methanol (80 : 20, v/v), trimethylsilylation, multiple reaction monitoring in the tandem mass spectrometric mode using the ion at m/z 217, and the use of an internal standard calibration procedure with the structurally related compound methyl beta-L-arabinopyranoside. In addition, the method allows the quantification of other saccharidic compounds, arabitol, mannitol, glucose, fructose, inositol and sucrose, which were found to be important in summer aerosols. The recovery of levoglucosan was estimated by spiking blank filters and was better than 90%. The precision evaluated by analyzing parts of the same filters was about 2% for the monosaccharide anhydrides and 7% for the other saccharidic compounds in the case of a winter aerosol sample, and the corresponding values for a summer aerosol sample were 5% and 8%. The method was applied to urban PM(10) (particulate matter of <10 microm aerodynamic diameter) aerosols collected at Ghent, Belgium, during a 2000-2001 winter and a 2001 summer episode and revealed interesting seasonal variations. While monosaccharide anhydrides were relatively more important during the winter season owing to wood burning, the other saccharidic compounds were more prevalent during the summer season, with some of them, if not all, originating from the vegetation.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Galactose/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/análogos & derivados , Glucose/análise , Manose/análogos & derivados , Monossacarídeos/análise , Aerossóis/química , Cidades , Galactose/análise , Galactose/química , Glucose/química , Manose/análise , Manose/química , Monossacarídeos/química , Sensibilidade e Especificidade
18.
Environ Sci Technol ; 36(4): 747-53, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11878393

RESUMO

An improved analytical method was developed and validated for the determination of the monosaccharide anhydrides levoglucosan, mannosan, and galactosan in atmospheric aerosol samples. The method uses an external recovery standard, extraction in dichloromethane, trimethylsilylation, addition of an internal standard (1-phenyl dodecane), and analysis by gas chromatography with flame ionization detection (GC-FID) and gas chromatography/mass spectrometry (GC/MS). As external recovery standard, we selected 1,2,3-trihydroxyhexane, which has a similar polarity as the monosaccharide anhydrides; furthermore, it was ensured that the trimethylsilylation step leads to complete derivatization into trimethylsilyl ethers. The reproducibility of the combined trimethylsilylation and analysis of levoglucosan was about 2% for standard solutions, whereas the precision of the entire method for the sum of all three monosaccharide anhydrides (MAs) in real aerosol filter samples was about 5%. The method was applied to aerosol samples from urban and tropical locations. The atmospheric concentration of the MAs in fine (<2.5 microm) aerosols at a primary forest site in Rondjnia, Brazil, was on average 2.15 microg m(-3) during the dry season when intensive biomass burning occurs, which was almost 400 times higher than during the wet (nonburning) season. Urban total aerosols collected in Gent, Belgium, showed an average atmospheric concentration of MAs of 0.56 microg m(-3) for the winter season, which was a factor of 20 higher than for the summer season. The carbon in the MAs accounted on average for about 5.1% and 1.8% of the organic carbon in the Brazilian dry season and Gent winter aerosols, respectively. Levoglucosan was the major MA, with a relative abundance in the range of 76-93%.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Galactose/análise , Glucose/análogos & derivados , Glucose/análise , Manose/análise , Aerossóis , Cidades , Galactose/análogos & derivados , Manose/análogos & derivados , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...