Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 259: 119557, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969314

RESUMO

Trihalomethanes (THMs) and nitrate are widespread chemicals in drinking water. Chronic exposure has been associated with increased cancer risk despite inconclusive evidence, partly due to the challenges in long-term exposure assessment and potential exposure misclassification. We estimated concentrations of nitrate and THMs in drinking water using a public regulatory monitoring database (SISE-Eaux) for CONSTANCES, a French population-based prospective cohort. We obtained 26,322,366 measurements of drinking water parameters from 2000 to 2020. We excluded missing, implausible and duplicated measurements; we corrected or imputed missing geocodes of sampling locations; we calculated the annual median concentration of nitrate and THMs by surveillance area. To predict missing annual median concentrations, linear mixed models with random intercept using surveillance area as a clustering variable were developed for each region for nitrate and the four THM components (chloroform, chlorodibromomethane, bromodichloromethane and bromoform) separately. Concentrations in the nearest surveillance area from the household were merged per year among 75,462 participants with residential history geocoded for 2000-2020. Estimated concentrations resulting from this approach were compared with measured concentrations in 100 samples collected in Paris, Rennes and Saint-Brieuc in 2021. Median annual concentrations of total THMs and nitrate at study participants' homes for 2000-2020 were, respectively, 15.7 µg/l (IQR: 15.2) and 15.2 mg/l (IQR: 20.8). Among these, 35% were based on measurements for nitrate (16% for THMs), 44% (46%) were predicted using on linear mixed models, and 21% (38%) were based on distribution unit median values. Conditional R2 predictive models ranged from 0.71 to 0.91 (median: 0.85) for nitrate, and from 0.48 to 0.80 for THMs (median: 0.68). These concentrations will allow future association analyses with risk of breast and colorectal cancer. Our cleaning process introduced here could be adapted to other large drinking water monitoring data.

2.
J Expo Sci Environ Epidemiol ; 29(5): 706-717, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30670772

RESUMO

Hair incorporates chemical compounds from the bloodstream and external sources as it grows. Different analytical procedures are proposed, but no consensus can be found for external contamination removal (washing stage). Thus, a major limitation of the use of hair analysis for human biomonitoring is the issue related to the washing efficiency, and the objective of this study was to propose a simple washing method for a better cleaning of external contamination. Based on a sequence of three steps of detergent or acid washing (Triton, nitric acid, and hydrochloric acid), the TNCl method was tested on raw and spiked samples and compared to other methods. Thirty-seven inorganic elements were analyzed by inductively Coupled Plasma Mass Spectrometry (ICP-MS) after washing and acid digestion of 10 hair samples (Li, Be, Na, Mg, Al, P, K, Ca, V, Cr, Fe, Mn, Co, N, Cu, Zn, As, Se, Sr, Mo, Ru, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Gd, Lu, Tl, Pb, Bi, Th, and U). The inorganic element concentrations in the hair samples were compared to those reported in the literature. The TNCl method was shown to be more efficient than other methods based on the use of surfactants and organic solvents.


Assuntos
Cabelo/química , Compostos Inorgânicos/análise , Oligoelementos/análise , Monitoramento Biológico/métodos , Detergentes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...