Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759701

RESUMO

Neuroplasticity is a crucial property of the central nervous system to change its activity in response to intrinsic or extrinsic stimuli. This is mainly achieved through the promotion of changes in the epigenome. One of the epi-drivers priming this process is suberoylanilide hydroxamic acid (SAHA or Vorinostat), a pan-histone deacetylase inhibitor that modulates and promotes neuroplasticity in healthy and disease conditions. Knowledge of the specific molecular changes induced by this epidrug is an important area of neuro-epigenetics for the identification of new compounds to treat cognition impairment and/or epilepsy. In this review, we summarize the findings obtained in cellular and animal models of various brain disorders, highlighting the multiple mechanisms activated by SAHA, such as improvement of memory, learning and behavior, and correction of faulty neuronal functioning. Supporting this evidence, in vitro and in vivo data underline how SAHA positively regulates the expression of neuronal genes and microtubule dynamics, induces neurite outgrowth and spine density, and enhances synaptic transmission and potentiation. In particular, we outline studies regarding neurodevelopmental disorders with pharmaco-resistant seizures and/or severe cognitive impairment that to date lack effective drug treatments in which SAHA could ameliorate defective neuroplasticity.

2.
Eur J Hum Genet ; 31(2): 202-215, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434256

RESUMO

Lysine-specific demethylase 5C (KDM5C) has been identified as an important chromatin remodeling gene, contributing to X-linked neurodevelopmental disorders (NDDs). The KDM5C gene, located in the Xp22 chromosomal region, encodes the H3K4me3-me2 eraser involved in neuronal plasticity and dendritic growth. Here we report 30 individuals carrying 13 novel and one previously identified KDM5C variants. Our cohort includes the first reported case of somatic mosaicism in a male carrying a KDM5C nucleotide substitution, and a dual molecular finding in a female carrying a homozygous truncating FUCA1 alteration together with a de novo KDM5C variant. With the use of next generation sequencing strategies, we detected 1 frameshift, 1 stop codon, 2 splice-site and 10 missense variants, which pathogenic role was carefully investigated by a thorough bioinformatic analysis. The pattern of X-chromosome inactivation was found to have an impact on KDM5C phenotypic expression in females of our cohort. The affected individuals of our case series manifested a neurodevelopmental condition characterized by psychomotor delay, intellectual disability with speech disorders, and behavioral features with particular disturbed sleep pattern; other observed clinical manifestations were short stature, obesity and hypertrichosis. Collectively, these findings expand the current knowledge about the pathogenic mechanisms leading to dysfunction of this important chromatin remodeling gene and contribute to a refinement of the KDM5C phenotypic spectrum.


Assuntos
Deficiência Intelectual , Lisina , Humanos , Masculino , Feminino , Lisina/genética , Mutação , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Deficiência Intelectual/genética , Cromatina , Mutação da Fase de Leitura
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142158

RESUMO

Glioblastoma multiforme (GBM) is a fatal brain tumor without effective drug treatment. In this study, we highlight, for the first time, the contribution of chromatin remodeling gene Lysine (K)-specific demethylase 5C (KDM5C) in GBM via an extensive analysis of clinical, expression, and functional data, integrated with publicly available omic datasets. The expression analysis on GBM samples (N = 37) revealed two informative subtypes, namely KDM5CHigh and KDM5CLow, displaying higher/lower KDM5C levels compared to the controls. The former subtype displays a strong downregulation of brain-derived neurotrophic factor (BDNF)-a negative KDM5C target-and a robust overexpression of hypoxia-inducible transcription factor-1A (HIF1A) gene, a KDM5C modulator. Additionally, a significant co-expression among the prognostic markers HIF1A, Survivin, and p75 was observed. These results, corroborated by KDM5C overexpression and hypoxia-related functional assays in T98G cells, suggest a role for the HIF1A-KDM5C axis in the hypoxic response in this tumor. Interestingly, fluorescence-guided surgery on GBM sections further revealed higher KDM5C and HIF1A levels in the tumor rim niche compared to the adjacent tumor margin, indicating a regionally restricted hyperactivity of this regulatory axis. Analyzing the TCGA expression and methylation data, we found methylation changes between the subtypes in the genes, accounting for the hypoxia response, stem cell differentiation, and inflammation. High NANOG and IL6 levels highlight a distinctive stem cell-like and proinflammatory signature in the KDM5CHigh subgroup and GBM niches. Taken together, our results indicate HIF1A-KDM5C as a new, relevant cancer axis in GBM, opening a new, interesting field of investigation based on KDM5C as a potential therapeutic target of the hypoxic microenvironment in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Hipóxia/genética , Interleucina-6/metabolismo , Lisina/metabolismo , Oxigênio/metabolismo , Survivina/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética
4.
Curr Issues Mol Biol ; 44(5): 2321-2334, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678687

RESUMO

In recent years, alongside the conventional screening procedures for the evaluation of probiotics for human usage, the pharmaceutical and food industries have encouraged scientific research towards the selection of new probiotic bacterial strains with particular functional features. Therefore, this study intended to explore novel functional properties of five Lactiplantibacillus plantarum strains isolated from bee bread. Specifically, antioxidant, antimicrobial and ß-glucosidase activities, exopolysaccharides (EPS) production and the ability to synthesize γ-aminobutyric acid (GABA) were evaluated. The results demonstrated that the investigated L. plantarum strains were effective in inhibiting the growth of some human opportunistic pathogens in vitro (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Enterococcus faecalis and Staphylococcus aureus). Moreover, the evaluation of antioxidant and ß-glucosidase activity and of EPS and GABA production, revealed a different behavior among the strains, testifying how these properties are strongly strain-dependent. This suggests that a careful selection within a given species is important in order to identify appropriate strains for specific biotechnological applications. The results highlighted that the five strains of L. plantarum are promising candidates for application as dietary supplements in the human diet and as microbial cultures in specific food productions.

5.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328505

RESUMO

The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, paediatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telencephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that-depending on the involvement of tissue-specific enhancers-the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance.


Assuntos
Genes Homeobox , Deficiência Intelectual , Animais , Criança , Proteínas de Homeodomínio/genética , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Neurosci ; 42(8): 1383-1405, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34983816

RESUMO

In sensory cortices, the information flow has been thought to be processed vertically across cortical layers, with layer 4 being the major thalamo-recipient which relays thalamic signals to layer 2/3, which in turn transmits thalamic information to layer 5 and 6 to then leave the cortex to reach subcortical and cortical long-range structures. Although several exceptions to this model have been described, neurons in layer 4 are still considered to establish only local (i.e., interlaminar and short-range) connections. Here, taking advantage of anatomic, electrophysiological, and optogenetic techniques, we describe, for the first time, a long-range corticostriatal class of pyramidal neurons in layer 4 (CS-L4) of the mouse auditory cortex that receive direct thalamic inputs. The CS-L4 neurons are embedded in a feedforward inhibitory circuit involving local parvalbumin neurons and establish connections in the posterior striatum in yet another feedforward inhibitory thalamo→cortico(L4)→striatal circuit which potentially contributes in controlling control the output of striatal spiny projection neurons.SIGNIFICANCE STATEMENT The assumption has been that layer 4 neurons are the main thalamic recipient layer, projecting to the upper cortical layer 2/3. However, no study has revealed a detailed understanding of the circuit mechanisms by which layer 4 sends a projection to a subcortical structure, such as the striatum, and differentially innervate the spiny projection neurons (SPNs) and intrastriatal parvalbumin-expressing neurons. For the first time, our results demonstrate that the auditory cortex projects to the posterior part of the dorsal striatum via pyramidal neurons located in layer 4 (CS-L4 neurons). Here we propose a new wiring diagram that implemented the old one, in which layer 4 is not only involved in the transfer of thalamic input to the upper layer 2/3, but can also exert a direct top-down control, bypassing intracortical processing of subcortical structures, such as the posterior part of the dorsal striatum. This poses a new conceptual cell element (CS-L4 neurons) for experimental and theoretical work of the cortical function.


Assuntos
Córtex Auditivo , Parvalbuminas , Animais , Córtex Auditivo/fisiologia , Corpo Estriado/fisiologia , Camundongos , Parvalbuminas/metabolismo , Percepção , Tálamo/fisiologia
7.
Hum Mol Genet ; 31(11): 1884-1908, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094084

RESUMO

X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.


Assuntos
Encefalopatias , Lisencefalia , Animais , Encefalopatias/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lisencefalia/genética , Camundongos , Microtúbulos/metabolismo , Mutação , Proteômica , RNA , Fatores de Transcrição/genética
8.
J Neurosci Methods ; 347: 108960, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987100

RESUMO

BACKGROUND: The application of single-cell RNA sequencing (scRNASeq) represents a unique approach to identify hundreds to millions of cells in mammalian cortical multilayers at different stages of embryogenesis. ScRNASeq technology applied to neurological studies requires the use of fresh starting materials because standard cryopreservation methods do not guarantee high viability of cortical primary cells derived from dissected brain areas. NEW METHOD: Here we set up and validate an innovative strategy to perform scRNASeq studies in cryopreserved primary cortical cells isolated from E15.5 mouse embryo. In order to freeze cortical primary cells, we have employed Neurostore, a medium able to guarantee high viability and cell composition of embryonic cortex after thawing. COMPARISON WITH EXISTING METHODS: We showed for the first time the possibility to run scRNASeq experiments on primary cortical cells in an off-line set-up, ensuring cellular integrity and diversity. RESULTS: By trypan blue assay and flow cytometry analysis, we found that Neurostore-cryopreserved cortical cells showed approximately 95 % of viability. Satisfactory RNA recovery and cDNA libraries were achieved. Transcriptome sequencing of 35,763 cryoconserved single cells yielded a robust data-set, identifying 25 cell clusters in three biological samples. Prevalence of peculiar neural populations before and after the cryopreservation-resuscitation procedure was verified by marker gene expression and immunofluorescence analysis. CONCLUSIONS: Our findings support the evidence that frozen primary cortical cells can be successfully employed in scRNASeq experiments allowing an unprecedented flexibility in experimental procedures, such as sample preparation and subsequent processing steps performed in different locations.


Assuntos
Criopreservação , Análise de Célula Única , Animais , Sequência de Bases , Citometria de Fluxo , Camundongos , Análise de Sequência de RNA
9.
Genes (Basel) ; 11(6)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580525

RESUMO

Unstable repeat disorders comprise a variable group of incurable human neurological and neuromuscular diseases caused by an increase in the copy number of tandem repeats located in various regions of their resident genes. It has become clear that dense DNA methylation in hyperexpanded non-coding repeats induces transcriptional silencing and, subsequently, insufficient protein synthesis. However, the ramifications of this paradigm reveal a far more profound role in disease pathogenesis. This review will summarize the significant progress made in a subset of non-coding repeat diseases demonstrating the role of dense landscapes of 5-methylcytosine (5mC) as a common disease modifier. However, the emerging findings suggest context-dependent models of 5mC-mediated silencing with distinct effects of excessive DNA methylation. An in-depth understanding of the molecular mechanisms underlying this peculiar group of human diseases constitutes a prerequisite that could help to discover novel pathogenic repeat loci, as well as to determine potential therapeutic targets. In this regard, we report on a brief description of advanced strategies in DNA methylation profiling for the identification of unstable Guanine-Cytosine (GC)-rich regions and on promising examples of molecular targeted therapies for Fragile X disease (FXS) and Friedrich ataxia (FRDA) that could pave the way for the application of this technique in other hypermethylated expansion disorders.


Assuntos
Metilação de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos/genética , 5-Metilcitosina/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Inativação Gênica , Humanos , Repetições de Trinucleotídeos/genética
10.
Hum Mol Genet ; 28(24): 4089-4102, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31691806

RESUMO

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.


Assuntos
Histona Desmetilases/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vorinostat/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...