Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(9): e530, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711644

RESUMO

High cellular pigment levels in dense microalgal cultures contribute to excess light absorption. To improve photosynthetic yields in the marine microalga Picochlorum celeri, CAS9 gene editing was used to target the molecular chaperone cpSRP43. Depigmented strains (>50% lower chlorophyll) were generated, with proteomics showing attenuated levels of most light harvesting complex (LHC) proteins. Gene editing generated two types of cpSRP43 transformants with distinct lower pigment phenotypes: (i) a transformant (Δsrp43) with both cpSRP43 diploid alleles modified to encode non-functional polypeptides and (ii) a transformant (STR30309) with a 3 nt in-frame insertion in one allele at the CAS9 cut site (non-functional second allele), leading to expression of a modified cpSRP43. STR30309 has more chlorophyll than Δsrp43 but substantially less than wild type. To further decrease light absorption by photosystem I in STR30309, CAS9 editing was used to stack in disruptions of both LHCA6 and LHCA7 to generate STR30843, which has higher (5-24%) productivities relative to wild type in solar-simulating bioreactors. Maximal productivities required frequent partial harvests throughout the day. For STR30843, exemplary diel bioreactor yields of ~50 g m-2 day-1 were attained. Our results demonstrate diel productivity gains in P. celeri by lowering pigment levels.

2.
Proc Natl Acad Sci U S A ; 115(30): E7015-E7022, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987047

RESUMO

Robust molecular tool kits in model and industrial microalgae are key to efficient targeted manipulation of endogenous and foreign genes in the nuclear genome for basic research and, as importantly, for the development of algal strains to produce renewable products such as biofuels. While Cas9-mediated gene knockout has been demonstrated in a small number of algal species with varying efficiency, the ability to stack traits or generate knockout mutations in two or more loci are often severely limited by selectable agent availability. This poses a critical hurdle in developing production strains, which require stacking of multiple traits, or in probing functionally redundant gene families. Here, we combine Cas9 genome editing with an inducible Cre recombinase in the industrial alga Nannochloropsis gaditana to generate a strain, NgCas9+Cre+, in which the potentially unlimited stacking of knockouts and addition of new genes is readily achievable. Cre-mediated marker recycling is first demonstrated in the removal of the selectable marker and GFP reporter transgenes associated with the Cas9/Cre construct in NgCas9+Cre+ Next, we show the proof-of-concept generation of a markerless knockout in a gene encoding an acyl-CoA oxidase (Aco1), as well as the markerless recapitulation of a 2-kb insert in the ZnCys gene 5'-UTR, which results in a doubling of wild-type lipid productivity. Finally, through an industrially oriented process, we generate mutants that exhibit up to ∼50% reduction in photosynthetic antennae size by markerless knockout of seven genes in the large light-harvesting complex gene family.


Assuntos
Acil-CoA Oxidase , Sistemas CRISPR-Cas , Edição de Genes , Lipídeos , Característica Quantitativa Herdável , Estramenópilas , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Lipídeos/biossíntese , Lipídeos/genética , Estramenópilas/genética , Estramenópilas/metabolismo
3.
Nat Biotechnol ; 35(7): 647-652, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28628130

RESUMO

Lipid production in the industrial microalga Nannochloropsis gaditana exceeds that of model algal species and can be maximized by nutrient starvation in batch culture. However, starvation halts growth, thereby decreasing productivity. Efforts to engineer N. gaditana strains that can accumulate biomass and overproduce lipids have previously met with little success. We identified 20 transcription factors as putative negative regulators of lipid production by using RNA-seq analysis of N. gaditana during nitrogen deprivation. Application of a CRISPR-Cas9 reverse-genetics pipeline enabled insertional mutagenesis of 18 of these 20 transcription factors. Knocking out a homolog of fungal Zn(II)2Cys6-encoding genes improved partitioning of total carbon to lipids from 20% (wild type) to 40-55% (mutant) in nutrient-replete conditions. Knockout mutants grew poorly, but attenuation of Zn(II)2Cys6 expression yielded strains producing twice as much lipid (∼5.0 g m-2 d-1) as that in the wild type (∼2.5 g m-2 d-1) under semicontinuous growth conditions and had little effect on growth.


Assuntos
Melhoramento Genético/métodos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Elementos Reguladores de Transcrição/genética , Estramenópilas/genética , Fatores de Transcrição/genética , Proteínas de Algas/genética , Regulação para Baixo/genética , Técnicas de Inativação de Genes , Lipídeos/genética , Estramenópilas/crescimento & desenvolvimento
4.
Protein Sci ; 13(2): 494-503, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14718652

RESUMO

Directed evolution technologies were used to selectively improve the stability of an enzyme without compromising its catalytic activity. In particular, this article describes the tandem use of two evolution strategies to evolve a xylanase, rendering it tolerant to temperatures in excess of 90 degrees C. A library of all possible 19 amino acid substitutions at each residue position was generated and screened for activity after a temperature challenge. Nine single amino acid residue changes were identified that enhanced thermostability. All 512 possible combinatorial variants of the nine mutations were then generated and screened for improved thermal tolerance under stringent conditions. The screen yielded eleven variants with substantially improved thermal tolerance. Denaturation temperature transition midpoints were increased from 61 degrees C to as high as 96 degrees C. The use of two evolution strategies in combination enabled the rapid discovery of the enzyme variant with the highest degree of fitness (greater thermal tolerance and activity relative to the wild-type parent).


Assuntos
Evolução Molecular Direcionada/métodos , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Substituição de Aminoácidos , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Variação Genética/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mapeamento de Peptídeos , Homologia de Sequência de Aminoácidos , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...